Download or read book Mathematical Interpretation of Formal Systems written by Wiskunding Genootschap Te Amsterdam and published by Hassell Street Press. This book was released on 2021-09-09 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Download or read book Mathematical Interpretation of Formal Systems written by Thoralf Skolem and published by . This book was released on 1955 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Metalogic written by Geoffrey Hunter and published by Univ of California Press. This book was released on 1973-06-26 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work makes available to readers without specialized training in mathematics complete proofs of the fundamental metatheorems of standard (i.e., basically truth-functional) first order logic. Included is a complete proof, accessible to non-mathematicians, of the undecidability of first order logic, the most important fact about logic to emerge from the work of the last half-century. Hunter explains concepts of mathematics and set theory along the way for the benefit of non-mathematicians. He also provides ample exercises with comprehensive answers.
Download or read book The Elements of Mathematical Logic written by Paul C. Rosenbloom and published by . This book was released on 1950 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is intended for readers who, while mature mathematically, have no knowledge of mathematical logic. We attempt to introduce the reader to the most important approaches to the subject, and, wherever possible within the limitations of space which we have set for ourselves, to give at least a few nontrivial results illustrating each of the important methods for attacking logical problems"--Preface.
Download or read book Principia Mathematica written by Alfred North Whitehead and published by . This book was released on 1910 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book G del s Theorem written by Torkel Franzén and published by CRC Press. This book was released on 2005-06-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel
Download or read book Provability Computability and Reflection written by Lev D. Beklemishev and published by Elsevier. This book was released on 2000-04-01 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provability, Computability and Reflection
Download or read book Handbook of the History and Philosophy of Mathematical Practice written by Bharath Sriraman and published by Springer Nature. This book was released on with total page 3221 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Sofic and Hyperlinear Groups and Connes Embedding Conjecture written by Valerio Capraro and published by Springer. This book was released on 2015-10-12 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents some cornerstone results in the study of sofic and hyperlinear groups and the closely related Connes' embedding conjecture. These notions, as well as the proofs of many results, are presented in the framework of model theory for metric structures. This point of view, rarely explicitly adopted in the literature, clarifies the ideas therein, and provides additional tools to attack open problems. Sofic and hyperlinear groups are countable discrete groups that can be suitably approximated by finite symmetric groups and groups of unitary matrices. These deep and fruitful notions, introduced by Gromov and Radulescu, respectively, in the late 1990s, stimulated an impressive amount of research in the last 15 years, touching several seemingly distant areas of mathematics including geometric group theory, operator algebras, dynamical systems, graph theory, and quantum information theory. Several long-standing conjectures, still open for arbitrary groups, are now settled for sofic or hyperlinear groups. The presentation is self-contained and accessible to anyone with a graduate-level mathematical background. In particular, no specific knowledge of logic or model theory is required. The monograph also contains many exercises, to help familiarize the reader with the topics present.
Download or read book Metamathematics of First Order Arithmetic written by Petr Hájek and published by Cambridge University Press. This book was released on 2017-03-02 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: A much-needed monograph on the metamathematics of first-order arithmetic, paying particular attention to fragments of Peano arithmetic.
Download or read book Contradictions from Consistency to Inconsistency written by Walter Carnielli and published by Springer. This book was released on 2018-10-13 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume investigates what is beyond the Principle of Non-Contradiction. It features 14 papers on the foundations of reasoning, including logical systems and philosophical considerations. Coverage brings together a cluster of issues centered upon the variety of meanings of consistency, contradiction, and related notions. Most of the papers, but not all, are developed around the subtle distinctions between consistency and non-contradiction, as well as among contradiction, inconsistency, and triviality, and concern one of the above mentioned threads of the broadly understood non-contradiction principle and the related principle of explosion. Some others take a perspective that is not too far away from such themes, but with the freedom to tread new paths. Readers should understand the title of this book in a broad way,because it is not so obvious to deal with notions like contradictions, consistency, inconsistency, and triviality. The papers collected here present groundbreaking ideas related to consistency and inconsistency.
Download or read book Provability Computability and Reflection written by Lev D. Beklemishev and published by Elsevier. This book was released on 2000-04-01 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provability, Computability and Reflection
Download or read book Asymptotic Differential Algebra and Model Theory of Transseries written by Matthias Aschenbrenner and published by Princeton University Press. This book was released on 2017-06-06 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Download or read book Introduction to the Foundations of Mathematics written by Raymond L. Wilder and published by Courier Corporation. This book was released on 2013-09-26 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
Download or read book Applications of Model Theory to Functional Analysis written by Jose Iovino and published by Courier Corporation. This book was released on 2014-11-19 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first self-contained introduction to techniques of model theory, this 2002 text presents material still not readily available elsewhere, including Krivine's theorem and the Krivine-Maurey theorem on stable Banach spaces.
Download or read book Handbook of Mathematical Logic written by J. Barwise and published by Elsevier. This book was released on 1982-03-01 with total page 1179 pages. Available in PDF, EPUB and Kindle. Book excerpt: The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.
Download or read book Algebraic Methods of Mathematical Logic written by Ladislav Rieger and published by Elsevier. This book was released on 2014-05-12 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Methods of Mathematical Logic focuses on the algebraic methods of mathematical logic, including Boolean algebra, mathematical language, and arithmetization. The book first offers information on the dialectic of the relation between mathematical and metamathematical aspects; metamathematico-mathematical parallelism and its natural limits; practical applications of methods of mathematical logic; and principal mathematical tools of mathematical logic. The text then elaborates on the language of mathematics and its symbolization and recursive construction of the relation of consequence. Discussions focus on recursive construction of the relation of consequence, fundamental descriptively-semantic rules, mathematical logic and mathematical language as a material system of signs, and the substance and purpose of symbolization of mathematical language. The publication examines expressive possibilities of symbolization; intuitive and mathematical notions of an idealized axiomatic mathematical theory; and the algebraic theory of elementary predicate logic. Topics include the notion of Boolean algebra based on joins, meets, and complementation, logical frame of a language and mathematical theory, and arithmetization and algebraization. The manuscript is a valuable reference for mathematicians and researchers interested in the algebraic methods of mathematical logic.