EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Aspects of Artificial Intelligence

Download or read book Mathematical Aspects of Artificial Intelligence written by Frederick Hoffman and published by American Mathematical Soc.. This book was released on 1998 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: There exists a history of great expectations and large investments involving artificial intelligence (AI). There are also notable shortfalls and memorable disappointments. One major controversy regarding AI is just how mathematical a field it is or should be. This text includes contributions that examine the connections between AI and mathematics, demonstrating the potential for mathematical applications and exposing some of the more mathematical areas within AI. The goal is to stimulate interest in people who can contribute to the field or use its results. Included in the work by M. Newborn on the famous Deep BLue chess match. He discusses highly mathematical techniques involving graph theory, combinatorics and probability and statistics. G. Shafer offers his development of probability through probability trees with some of the results appearing here for the first time. M. Golumbic treats temporal reasoning with ties to the famous Frame Problem. His contribution involves logic, combinatorics and graph theory and leads to two chapters with logical themes. H. Kirchner explains how ordering techniques in automated reasoning systems make deduction more efficient. Constraint logic programming is discussed by C. Lassez, who shows its intimate ties to linear programming with crucial theorems going back to Fourier. V. Nalwa's work provides a brief tour of computer vision, tying it to mathematics - from combinatorics, probability and geometry to partial differential equations. All authors are gifted expositors and are current contributors to the field. The wide scope of the volume includes research problems, research tools and good motivational material for teaching.

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Book Artificial Mathematical Intelligence

Download or read book Artificial Mathematical Intelligence written by Danny A. J. Gómez Ramírez and published by Springer Nature. This book was released on 2020-10-23 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume discusses the theoretical foundations of a new inter- and intra-disciplinary meta-research discipline, which can be succinctly called cognitive metamathematics, with the ultimate goal of achieving a global instance of concrete Artificial Mathematical Intelligence (AMI). In other words, AMI looks for the construction of an (ideal) global artificial agent being able to (co-)solve interactively formal problems with a conceptual mathematical description in a human-style way. It first gives formal guidelines from the philosophical, logical, meta-mathematical, cognitive, and computational points of view supporting the formal existence of such a global AMI framework, examining how much of current mathematics can be completely generated by an interactive computer program and how close we are to constructing a machine that would be able to simulate the way a modern working mathematician handles solvable mathematical conjectures from a conceptual point of view. The thesis that it is possible to meta-model the intellectual job of a working mathematician is heuristically supported by the computational theory of mind, which posits that the mind is in fact a computational system, and by the meta-fact that genuine mathematical proofs are, in principle, algorithmically verifiable, at least theoretically. The introduction to this volume provides then the grounding multifaceted principles of cognitive metamathematics, and, at the same time gives an overview of some of the most outstanding results in this direction, keeping in mind that the main focus is human-style proofs, and not simply formal verification. The first part of the book presents the new cognitive foundations of mathematics’ program dealing with the construction of formal refinements of seminal (meta-)mathematical notions and facts. The second develops positions and formalizations of a global taxonomy of classic and new cognitive abilities, and computational tools allowing for calculation of formal conceptual blends are described. In particular, a new cognitive characterization of the Church-Turing Thesis is presented. In the last part, classic and new results concerning the co-generation of a vast amount of old and new mathematical concepts and the key parts of several standard proofs in Hilbert-style deductive systems are shown as well, filling explicitly a well-known gap in the mechanization of mathematics concerning artificial conceptual generation.

Book Research Directions in Computational Mechanics

Download or read book Research Directions in Computational Mechanics written by National Research Council and published by National Academies Press. This book was released on 1991-02-01 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Book Mathematical Methods in Artificial Intelligence

Download or read book Mathematical Methods in Artificial Intelligence written by Edward A. Bender and published by Wiley-IEEE Computer Society Press. This book was released on 1996-02-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Methods in Artificial Intelligence introduces the student to the important mathematical foundations and tools in AI and describes their applications to the design of AI algorithms. This useful text presents an introductory AI course based on the most important mathematics and its applications. It focuses on important topics that are proven useful in AI and involve the most broadly applicable mathematics. The book explores AI from three different viewpoints: goals, methods or tools, and achievements and failures. Its goals of reasoning, planning, learning, or language understanding and use are centered around the expert system idea. The tools of AI are presented in terms of what can be incorporated in the data structures. The book looks into the concepts and tools of limited structure, mathematical logic, logic-like representation, numerical information, and nonsymbolic structures. The text emphasizes the main mathematical tools for representing and manipulating knowledge symbolically. These are various forms of logic for qualitative knowledge, and probability and related concepts for quantitative knowledge. The main tools for manipulating knowledge nonsymbolically, as neural nets, are optimization methods and statistics. This material is covered in the text by topics such as trees and search, classical mathematical logic, and uncertainty and reasoning. A solutions diskette is available, please call for more information.

Book Mathematical Aspects of Logic Programming Semantics

Download or read book Mathematical Aspects of Logic Programming Semantics written by Pascal Hitzler and published by CRC Press. This book was released on 2016-04-19 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering the authors' own state-of-the-art research results, this book presents a rigorous, modern account of the mathematical methods and tools required for the semantic analysis of logic programs. It significantly extends the tools and methods from traditional order theory to include nonconventional methods from mathematical analysis that depend on topology, domain theory, generalized distance functions, and associated fixed-point theory. The authors closely examine the interrelationships between various semantics as well as the integration of logic programming and connectionist systems/neural networks.

Book Artificial and Mathematical Theory of Computation

Download or read book Artificial and Mathematical Theory of Computation written by Vladimir Lifschitz and published by Academic Press. This book was released on 2012-12-02 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial and Mathematical Theory of Computation is a collection of papers that discusses the technical, historical, and philosophical problems related to artificial intelligence and the mathematical theory of computation. Papers cover the logical approach to artificial intelligence; knowledge representation and common sense reasoning; automated deduction; logic programming; nonmonotonic reasoning and circumscription. One paper suggests that the design of parallel programming languages will invariably become more sophisticated as human skill in programming and software developments improves to attain faster running programs. An example of metaprogramming to systems concerns the design and control of operations of factory devices, such as robots and numerically controlled machine tools. Metaprogramming involves two design aspects: that of the activity of a single device and that of the interaction with other devices. One paper cites the application of artificial intelligence pertaining to the project "proof checker for first-order logic" at the Stanford Artificial Intelligence Laboratory. Another paper explains why the bisection algorithm widely used in computer science does not work. This book can prove valuable to engineers and researchers of electrical, computer, and mechanical engineering, as well as, for computer programmers and designers of industrial processes.

Book Revolutionary Mathematics

Download or read book Revolutionary Mathematics written by Justin Joque and published by Verso Books. This book was released on 2022-01-18 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traces the revolution in statistics that gave rise to artificial intelligence and predictive algorithms refiguring contemporary capitalism. Our finances, politics, media, opportunities, information, shopping and knowledge production are mediated through algorithms and their statistical approaches to knowledge; increasingly, these methods form the organizational backbone of contemporary capitalism. Revolutionary Mathematics traces the revolution in statistics and probability that has quietly underwritten the explosion of machine learning, big data and predictive algorithms that now decide many aspects of our lives. Exploring shifts in the philosophical understanding of probability in the late twentieth century, Joque shows how this was not merely a technical change but a wholesale philosophical transformation in the production of knowledge and the extraction of value. This book provides a new and unique perspective on the dangers of allowing artificial intelligence and big data to manage society. It is essential reading for those who want to understand the underlying ideological and philosophical changes that have fueled the rise of algorithms and convinced so many to blindly trust their outputs, reshaping our current political and economic situation.

Book A Thousand Brains

    Book Details:
  • Author : Jeff Hawkins
  • Publisher : Basic Books
  • Release : 2021-03-02
  • ISBN : 1541675800
  • Pages : 251 pages

Download or read book A Thousand Brains written by Jeff Hawkins and published by Basic Books. This book was released on 2021-03-02 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bestselling author, neuroscientist, and computer engineer unveils a theory of intelligence that will revolutionize our understanding of the brain and the future of AI. For all of neuroscience's advances, we've made little progress on its biggest question: How do simple cells in the brain create intelligence? Jeff Hawkins and his team discovered that the brain uses maplike structures to build a model of the world—not just one model, but hundreds of thousands of models of everything we know. This discovery allows Hawkins to answer important questions about how we perceive the world, why we have a sense of self, and the origin of high-level thought. A Thousand Brains heralds a revolution in the understanding of intelligence. It is a big-think book, in every sense of the word. One of the Financial Times' Best Books of 2021 One of Bill Gates' Five Favorite Books of 2021

Book Artificial Intelligence and Applied Mathematics in Engineering Problems

Download or read book Artificial Intelligence and Applied Mathematics in Engineering Problems written by D. Jude Hemanth and published by Springer Nature. This book was released on 2020-01-03 with total page 1105 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features research presented at the 1st International Conference on Artificial Intelligence and Applied Mathematics in Engineering, held on 20–22 April 2019 at Antalya, Manavgat (Turkey). In today’s world, various engineering areas are essential components of technological innovations and effective real-world solutions for a better future. In this context, the book focuses on problems in engineering and discusses research using artificial intelligence and applied mathematics. Intended for scientists, experts, M.Sc. and Ph.D. students, postdocs and anyone interested in the subjects covered, the book can also be used as a reference resource for courses related to artificial intelligence and applied mathematics.

Book Mathematical Aspects of Computer and Information Sciences

Download or read book Mathematical Aspects of Computer and Information Sciences written by Johannes Blömer and published by Springer. This book was released on 2017-12-20 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 7th International Conference on Mathematical Aspects of Computer and Information Sciences, MACIS 2017, held in Vienna, Austria, in November 2017. The 28 revised papers and 8 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in the following topical sections: foundation of algorithms in mathematics, engineering and scientific computation; combinatorics and codes in computer science; data modeling and analysis; and mathematical aspects of information security and cryptography.

Book Mathematical Aspects of Scheduling and Applications

Download or read book Mathematical Aspects of Scheduling and Applications written by R. Bellman and published by Elsevier. This book was released on 2014-05-20 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Aspects of Scheduling and Applications addresses the perennial problem of optimal utilization of finite resources in the accomplishment of an assortment of tasks or objectives. The book provides ways to uncover the core of these problems, presents them in mathematical terms, and devises mathematical solutions for them. The book consists of 12 chapters. Chapter 1 deals with network problems, the shortest path problem, and applications to control theory. Chapter 2 stresses the role and use of computers based on the decision-making problems outlined in the preceding chapter. Chapter 3 classifies scheduling problems and their solution approaches. Chapters 4 to 6 discuss machine sequencing problems and techniques. Chapter 5 tackles capacity expansion problems and introduces the technique of embedded state space dynamic programming for reducing dimensionality so that larger problems can be solved. Chapter 6 then examines an important class of network problems with non-serial phase structures and exploits dimensionality reduction techniques, such as the pseudo-stage concept, branch compression, and optimal order elimination methods to solve large-scale, nonlinear network scheduling problems. Chapters 7 to 11 consider the flow-shop scheduling problem under different objectives and constraints. Chapter 12 discusses the job-shop-scheduling problem. The book will be useful to economists, planners, and graduate students in the fields of mathematics, operations research, management science, computer science, and engineering.

Book Hands On Mathematics for Deep Learning

Download or read book Hands On Mathematics for Deep Learning written by Jay Dawani and published by Packt Publishing Ltd. This book was released on 2020-06-12 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key FeaturesUnderstand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networksLearn the mathematical concepts needed to understand how deep learning models functionUse deep learning for solving problems related to vision, image, text, and sequence applicationsBook Description Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL. What you will learnUnderstand the key mathematical concepts for building neural network modelsDiscover core multivariable calculus conceptsImprove the performance of deep learning models using optimization techniquesCover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizerUnderstand computational graphs and their importance in DLExplore the backpropagation algorithm to reduce output errorCover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)Who this book is for This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.

Book Mathematics and Programming for Machine Learning with R

Download or read book Mathematics and Programming for Machine Learning with R written by William Claster and published by CRC Press. This book was released on 2020-10-26 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the author’s experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms

Book Universal Artificial Intelligence

Download or read book Universal Artificial Intelligence written by Marcus Hutter and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans.

Book Deep Learning for Coders with fastai and PyTorch

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Book Understanding Machine Learning

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.