Download or read book Mathematical and Quantum Aspects of Relativity and Cosmology written by Spiros Cotsakis and published by Springer. This book was released on 2008-01-11 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written in a pedagogical style intelligible for graduate students. It reviews recent progress in black-hole and wormhole theory and in mathematical cosmology within the framework of Einstein's field equations and beyond, including quantum effects. This collection of essays, written by leading scientists of long standing reputation, should become an indispensable source for future research.
Download or read book Modern Canonical Quantum General Relativity written by Thomas Thiemann and published by Cambridge University Press. This book was released on 2008-11-13 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete treatise of the canonical quantisation of general relativity and the loop quantum gravity theory. Mathematical concepts are provided, so it can be read by graduate students with a basic knowledge of quantum field theory or general relativity.
Download or read book Aspects of Quantum Field Theory in Curved Spacetime written by Stephen A. Fulling and published by Cambridge University Press. This book was released on 1989-08-24 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. This book provides, for mathematicians, an introduction to this field of physics in a language and from a viewpoint which such a reader should find congenial. Physicists should also gain from reading this book a sound grasp of various aspects of the theory, some of which have not been particularly emphasised in the existing review literature. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the 'Klein' paradox, particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalisation of the stress tensor. The style is pedagogic rather than formal; some knowledge of general relativity and differential geometry is assumed, but the author does supply background material on functional analysis and quantum field theory as required. The book arose from a course taught to graduate students and could be used for self-study or for advanced courses in relativity and quantum field theory.
Download or read book Physics for Mathematicians written by Michael Spivak and published by . This book was released on 2010 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Introduction to Tensor Calculus and Relativity written by Derek Frank Lawden and published by . This book was released on 2013-08 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Canonical Gravity and Applications written by Martin Bojowald and published by Cambridge University Press. This book was released on 2010-12-23 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Canonical methods are a powerful mathematical tool within the field of gravitational research, both theoretical and experimental, and have contributed to a number of recent developments in physics. Providing mathematical foundations as well as physical applications, this is the first systematic explanation of canonical methods in gravity. The book discusses the mathematical and geometrical notions underlying canonical tools, highlighting their applications in all aspects of gravitational research from advanced mathematical foundations to modern applications in cosmology and black hole physics. The main canonical formulations, including the Arnowitt-Deser-Misner (ADM) formalism and Ashtekar variables, are derived and discussed. Ideal for both graduate students and researchers, this book provides a link between standard introductions to general relativity and advanced expositions of black hole physics, theoretical cosmology or quantum gravity.
Download or read book The Problem of Time written by Edward Anderson and published by Springer. This book was released on 2017-09-18 with total page 917 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon entertaining background independence in classical (rather than quantum) physics. By this development, and interpreting shape theory as modelling background independence, this book further establishes background independence as a field of study. Background independent mechanics, as well as minisuperspace (spatially homogeneous) models of GR and perturbations thereabout are used to illustrate these points. As hitherto formulated, the different facets of the Problem of Time greatly interfere with each others' attempted resolutions. This book explains how, none the less, a local resolution of the Problem of Time can be arrived at after various reconceptualizations of the facets and reformulations of their mathematical implementation. Self-contained appendices on mathematical methods for basic and foundational quantum gravity are included. Finally, this book outlines how supergravity is refreshingly different from GR as a realization of background independence, and what background independence entails at the topological level and beyond.
Download or read book An Introduction to Mathematical Cosmology written by Jamal N. Islam and published by Cambridge University Press. This book was released on 2002 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on mathematical cosmology for beginning graduate students.
Download or read book General Relativity for Mathematicians written by R.K. Sachs and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
Download or read book Tensors Relativity and Cosmology written by Mirjana Dalarsson and published by Academic Press. This book was released on 2015-07-08 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in motion, relativistic addition of velocities, and the twin paradox, as well as new material on gravitational waves, amongst other topics. - Clearly combines relativity, astrophysics, and cosmology in a single volume - Extensive introductions to each section are followed by relevant examples and numerous exercises - Presents topics of interest to those researching and studying tensor calculus, the theory of relativity, gravitation, cosmology, quantum cosmology, Robertson-Walker Metrics, curvature tensors, kinematics, black holes, and more - Fully revised and updated with 80 pages of new material on relativistic effects, such as relativity of simultaneity and relativity of the concept of distance, amongst other topics - Provides an easy-to-understand approach to this advanced field of mathematics and modern physics by providing highly detailed derivations of all equations and results
Download or read book Lectures on General Relativity Cosmology and Quantum Black Holes written by Badis Ydri and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a rigorous text for students in physics and mathematics requiring an introduction to the implications and interpretation of general relativity in areas of cosmology. Readers of this text will be well prepared to follow the theoretical developments in the field and undertake research projects as part of an MSc or PhD programme. This ebook contains interactive Q & A technology, allowing the reader to interact with the text and reveal answers to selected exercises posed by the author within the book. This feature may not function in all formats and on reading devices."--Prové de l'editor.
Download or read book Quantum Gravity written by Carlo Rovelli and published by Cambridge University Press. This book was released on 2007-11-29 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum gravity is perhaps the most important open problem in fundamental physics. It is the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this 2004 book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the subject of quantum gravity, hard-to-find mathematical material, and a discussion of some philosophical issues raised by the subject. This fascinating text is ideal for graduate students entering the field, as well as researchers already working in quantum gravity. It will also appeal to philosophers and other scholars interested in the nature of space and time.
Download or read book Relativistic Cosmology written by George F. R. Ellis and published by Cambridge University Press. This book was released on 2012-03-22 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveying key developments and open issues in cosmology for graduate students and researchers, this book focuses on the general concepts and relations that underpin the standard model of the Universe. It also examines anisotropic and inhomogeneous models, and deeper issues, such as quantum cosmology and the multiverse proposal.
Download or read book Explorations in Mathematical Physics written by Don Koks and published by Springer Science & Business Media. This book was released on 2006-09-15 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.
Download or read book Quantum Cosmology written by Martin Bojowald and published by Springer Science & Business Media. This book was released on 2011-07-15 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Consequences of quantum gravity on grander scales are expected to be enormous: only such a theory can show how black holes really behave and where our universe came from. Applications of loop quantum gravity to cosmology have especially by now shed much light on cosmic evolution of a universe in a fundamental, microscopic description. Modern techniques are explained in this book which demonstrate how the universe could have come from a non-singular phase before the big bang, how equations for the evolution of structure can be derived, but also what fundamental limitations remain to our knowledge of the universe before the big bang. The following topics will be covered in this book: Hamiltonian cosmology: a general basic treatment of isotropy, perturbations and their role for observations; useful in general cosmology. Effective equations: an efficient way to evaluate equations of quantum gravity, which is also useful in other areas of physics where quantum theory is involved. Loop quantization: a new formalism for the atomic picture of space-time; usually presented at a sophisticated mathematical level, but evaluated here from an intuitive physical side. The book will start with physical motivations, rather than mathematical developments which is more common in other expositions of this field. All the required mathematical methods will be presented, but will not distract the reader from seeing the underlying physics. Simple but representative models will be presented first to show the basic features, which are then used to work upwards to a general description of quantum gravity and its applications in cosmology. This will make the book accessible to a more general physics readership.
Download or read book Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes written by Thomas-Paul Hack and published by Springer. This book was released on 2015-08-17 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.>
Download or read book Quantum written by Edgard Elbaz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new approach to the teaching of quantum physics. The first seven chapters present nonrelativistic quantum mechanics and its interpretation, as well as perturbations and scattering theory. While including Dirac's and Feynman's formalisms, the chapter on symmetry also treats gauge transformations. The quantum theory of angular momentum includes the isospin of leptons and quarks and uses as a new tool the graphical spin algebra. The second part of the book is devoted to quantum fields: Boson fields including Higgs fields, Dirac's theory of Fermion fields, quantum electrodynamic and quantum chromodynamics. The whole is rounded off by a brief review guaranteed to raise the students' interests in quantum cosmology. Readers will also find many detailed worked examples and numerous problems designed to test their own understanding.