EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Materials Design for Block Copolymer Lithography

Download or read book Materials Design for Block Copolymer Lithography written by and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up a wide slew of applications from directed self-assembly to biomaterial engineering.

Book Design  Synthesis  and Engineering of Advanced Materials for Block Copolymer Lithography

Download or read book Design Synthesis and Engineering of Advanced Materials for Block Copolymer Lithography written by William John Durand and published by . This book was released on 2015 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCPs) are an attractive alternative for patterning applications used to produce next-generation microelectronic devices. Advancements require the development of high interaction parameter [chi] BCPs that enable patterning at the sub-10 nm length scale. Several organosilicon BCPs were designed to both enhance [chi] and impart an inherent etch selectivity that facilitates pattern transfer processes. Increasing the BCP silicon content both increases [chi] and bolsters the etch resistance, providing a pathway to designing new high-[chi] materials. Unfortunately, the BCPs investigated are not amenable to thermal annealing because the organosilicon block preferentially segregates to an air/vacuum interface and drives orientation parallel to the surface. A series of spin-coatable, polarity-switching top coats (as well as other strategies) were developed to provide a "neutral" top interface and promote the perpendicular orientation of BCP domains. In addition, a methodology for evaluating the neutral condition, relying on thickness quantization and the corresponding wetting behavior (i.e. island/hole topography) of lamellae. The top coat strategy was demonstrated for several BCP systems, and perpendicular structures can successfully be etched on commercial tools and be transferred into underlying substrates. The interaction parameter [chi] was evaluated using two methods to compare the performance of several BCPs: the order-disorder transition (ODT) of symmetric diblock copolymers, and the absolute scattering profile of a disordered BCP melt. Both methods, while severely limited for quantitative comparison, indicate trends towards higher [chi] with additional appended polar and organosilicon functional groups. Furthermore, the pattern fidelity is shown to be a function of the overall BCP segregation strength. The free energy of confined lamella was modeled algebraically to produce response surface plots capable of identifying process conditions favorable for perpendicular orientation. Thickness independent perpendicular orientation is only favorable using two neutral interfaces. Incommensurate film thicknesses are the most favorable, with commensurability conditions dependent on the wetting behavior at each interface. The modeling was supplemented with an extensive body of thin film experimental work that qualitatively agrees well with the above conclusions.

Book Advanced Materials for Block Copolymer Lithography

Download or read book Advanced Materials for Block Copolymer Lithography written by Christopher Martin Bates and published by . This book was released on 2013 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multi-billion dollar per year lithography industry relies on the fusion of chemistry, materials science, and engineering to produce technological innovations that enable continual improvements in the speed and storage density of microelectronic devices. A critical prerequisite to improving the computers of today relies on the ability to economically and controllably form thin film structures with dimensions on the order of tens of nanometers. One class of materials that potentially meets these requirements is block copolymers since they can self-assemble into structures with characteristic dimensions circa three to hundreds of nanometers. The different aspects of the block copolymer lithographic process are the subject of this dissertation. A variety of interrelated material requirements virtually necessitate the synthesis of block copolymers specifically designed for lithographic applications. Key properties for the ideal block copolymer include etch resistance to facilitate thin film processing, a large interaction parameter to enable the formation of high resolution structures, and thin film orientation control. The unifying theme for the materials synthesized herein is the presence of silicon in one block, which imparts oxygen etch resistance to just that domain. A collection of silicon-containing block copolymers was synthesized and characterized, many of which readily form features on approximately the length scale required for next-generation microelectronic devices. The most important thin film processing step biases the orientation of block copolymer domains perpendicular to the substrate by control of interfacial interactions. Both solvent and thermal annealing techniques were extensively studied to achieve orientation control. Ultimately, a dual top and bottom surface functionalization strategy was developed that utilizes a new class of "top coats" and cross-linkable substrate surface treatments. Perpendicular block copolymer features can now be produced quickly with a process amenable to existing manufacturing technology, which was previously impossible. The development of etching recipes and pattern transfer processes confirmed the through-film nature of the features and the efficacy of both the block copolymer design and the top coat process.

Book Design of Silicon containing Block Copolymer Materials for Applications in Lithography

Download or read book Design of Silicon containing Block Copolymer Materials for Applications in Lithography written by Gregory Blachut and published by . This book was released on 2016 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continual advancement in microelectronic performance has made microelectronics essentially ubiquitous, enriching modern life in ways unimaginable even a few decades ago. The advancement in microelectronic devices is made possible by advancements in the manufacturing processes used to make them. Chief among these technologies is lithography, the process by which the individual components on the device are patterned. At present, complex and complicated double-patterning processes are being used to extend the resolution of the lithographic methods used in high-volume manufacturing, but only at great cost. Future generations of microelectronic devices will require even further use of multiple-patterning processes, at which point the economics of manufacturing could prevent the commercialization of such devices. This economic reality has spurred interest in alternative patterning technologies. One of the leading potential methods is to exploit the self-assembly of block copolymers (BCPs). BCPs are a type of polymer consisting of two or more chemically distinct blocks that are covalently joined together. The components of a BCP can phase-separate, and the resultant features form on the 5 to 50 nm length-scale. This size range is coincidentally ideal for next-generation semiconductor devices. However, BCPs on their own do not immediately form device-relevant features. Processes known collectively as directed self-assembly (DSA) are needed to properly guide BCPs. The work in this dissertation focuses on a very specific class of BCPs, those that contain silicon in just one of the blocks. The presence of silicon in the molecule produces many lithographic advantages, but also requires specialized processing steps. Chapter 1 provides an overview of lithography and block copolymer self-assembly. Chapter 2 introduces the materials and techniques needed to control the behavior of silicon-containing BCPs. Chapter 3 presents and characterizes a variety of silicon-containing BCPs. Last, Chapters 4 and 5 describe two implementations of silicon-containing BCP DSA, one for semiconductor patterning, and the other for hard disk drive applications.

Book Directed Self assembly of Block Co polymers for Nano manufacturing

Download or read book Directed Self assembly of Block Co polymers for Nano manufacturing written by Roel Gronheid and published by Woodhead Publishing. This book was released on 2015-07-17 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields

Book Next Generation Materials for Block Copolymer Lithography

Download or read book Next Generation Materials for Block Copolymer Lithography written by Michael Joseph Maher and published by . This book was released on 2016 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electronics industry is a trillion dollar industry that has drastically changed everyday life. Advances in lithography have enabled manufacturers to continually shrink the dimensions of microelectronic components, which has resulted in devices that outperform previous generations. Unfortunately, conventional patterning techniques are approaching their physical resolution limits. The ability to economically pattern sub-10 nm features is necessary for the future growth of the industry. Block copolymer self-assembly has emerged as a leading candidate for next generation lithography and nanofabrication because block copolymers self-assemble into periodic nanostructures (e.g. cylinders and lamellae) on a length scale that exceeds the physical limits of optical lithography. However, for block copolymer lithography to be realized, the block copolymer domains need to form sub-10 nm features and display etch resistance for pattern transfer. Additionally, the orientation, alignment, and placement of block copolymer domains must be carefully controlled. This dissertation discusses the synthesis, orientation and alignment of silicon-containing BCPs that are inherently etch resistant and provide access to nanostructures in the sub-10 nm regime. The orientation of domains is controlled by interactions between each block copolymer domain and each interface. Preferential interactions between the block copolymer domains and the either the substrate or air interface lead to a parallel orientation of domains, which is not useful for lithography. Non-preferential (“neutral”) interactions are needed to promote the desired perpendicular orientation. The synthesis of surface treatments and top coats is described, and methods to determine the preferential and non-preferential interactions are reported. Orientation control is demonstrated via rapid thermal annealing between two neutral surfaces. Combining orientation control of block copolymer domains with well established directed self-assembly strategies was used to produce perpendicular domains with long range order. Chapter 1 provides an introduction to lithography and block copolymer self-assembly. Chapter 2 discusses the synthesis of silicon-containing block copolymers. Chapters 4-6 focus on controlling block copolymer domain orientation, and Chapter 7 focuses on directed self-assembly. Chapter 8 covers spatial orientation control of domains using photopatternable interfaces. Finally, Chapter 9 covers tin-containing polymers that are resistant to fluorine-containing etch chemistries and can be used to pattern silicon oxide.

Book Coarse Grained Modeling of Block Copolymer Lithography  The Effects of Pattern Design on the Thermodynamics and Kinetics of the Directed Self Assembly of Block Copolymers

Download or read book Coarse Grained Modeling of Block Copolymer Lithography The Effects of Pattern Design on the Thermodynamics and Kinetics of the Directed Self Assembly of Block Copolymers written by Grant Parker Garner and published by . This book was released on 2017 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prior to the work presented in Chapter 2, the TICG model has been used in conjunction with a chemical pattern that is approximated as a hard-impenetrable surface. As many experimental systems use polymer brushes to help guide the polymer melt deposited on the substrate, this work analyzes the consequences of such an assumption by comparing a model where the polymer brush is explicitly implemented to the hard-wall substrate used in the past. Then, a methodology which utilizes a evolutionary optimization method is used to map the parameters of the more detailed model to the hard-surface model. This provides a qualitative understanding of how to interpret the model parameters used in previous works in the context of real experimental pattern designs.

Book Materials and Processes for Next Generation Lithography

Download or read book Materials and Processes for Next Generation Lithography written by and published by Elsevier. This book was released on 2016-11-08 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the requirements of the semiconductor industry have become more demanding in terms of resolution and speed it has been necessary to push photoresist materials far beyond the capabilities previously envisioned. Currently there is significant worldwide research effort in to so called Next Generation Lithography techniques such as EUV lithography and multibeam electron beam lithography. These developments in both the industrial and the academic lithography arenas have led to the proliferation of numerous novel approaches to resist chemistry and ingenious extensions of traditional photopolymers. Currently most texts in this area focus on either lithography with perhaps one or two chapters on resists, or on traditional resist materials with relatively little consideration of new approaches. This book therefore aims to bring together the worlds foremost resist development scientists from the various community to produce in one place a definitive description of the many approaches to lithography fabrication. Assembles up-to-date information from the world’s premier resist chemists and technique development lithographers on the properties and capabilities of the wide range of resist materials currently under investigation Includes information on processing and metrology techniques Brings together multiple approaches to litho pattern recording from academia and industry in one place

Book Block Copolymers

Download or read book Block Copolymers written by Nikos Hadjichristidis and published by John Wiley & Sons. This book was released on 2003-04-28 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymers may be classified as either homopolymers, consisting of one single repeating unit, or copolymers, consisting of two or more distinct repeating units. Block copolymers contain long contiguous blocks of two or more repeating units in the same polymer chain. Covering one of the hottest topics in polymer chemistry, Block Copolymers provides a coherent overview of the synthetic routes, physical properties, and applications of block copolymers. This pioneering text provides not only a guideline for developing synthetic strategies for creating block copolymers with defined characteristics, but also a key to the relationship between the physical properties of block copolymers and the structure and dynamics of materials. Covering features of the chemistry and physics of block copolymers that are not found in comparable texts, Block Copolymers illustrates the structure-activity relationship of block copolymers and offers suggestions for the design of specific applications. Divided into five sections-Block Copolymers includes chapters on: * Block Copolymers by Chemical Modification of Precursor Polymers * Nonlinear Block Copolymers * Adsorption of Block Copolymers at Solid-Liquid Interfaces * Theory of Block Copolymer Segregation * Phase Transformation Kinetics * Block Copolymer Morphology * Block Copolymer Dynamics Polymer chemists, physicists, chemical engineers, and materials scientists, as well as graduate students in polymer science, will find Block Copolymers to be an invaluable text.

Book Polyhydroxystyrene based Block Copolymers for Next Generation Lithography

Download or read book Polyhydroxystyrene based Block Copolymers for Next Generation Lithography written by Jian Sun and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies on block copolymer (BCP) materials and their phase separation in bulk and thin-film forms have exploded over the last decades, due to the wide range of accessible morphologies (e.g. spheres, cylinders, gyroid, and lamellae) and feature sizes (5-200 nm). BCPs are advantageous in generating periodic patterns at nanoscale over a large area. Hence, BCP lithography is considered to be a promising candidate for microelectronics as sub-10 nm feature sizes can be achieved in a scalable manner. It is also considered to be more cost-effective and less tedious compared to patterning methods such as electron-beam lithography and extreme ultraviolet lithography. While accessing sub-5 nm feature size is no longer a challenge utilizing BCP self-assembly, transferring the self-assembled BCP features to a substrate with high fidelity presents enormous challenges, especially at the 10 nm length scale. The work presented in this thesis focuses on rational design, synthesis and self-assembly studies of BCPs with high interaction parameters to address the outstanding challenges in BCP lithography at very small length scales, namely aligning BCP films vertically oriented to the substrate and imparting sufficient etch contrast to achieve pattern transfer. In this thesis, a new family of BCPs is designed and synthesized by combining poly(3-hydroxystyrene) (P3HS) and poly(dimethylsiloxnae) (PDMS) as the two blocks. We develop synthetic routes to generate both diblock (P3HS-b-PDMS) and triblock (P3HS-b-PDMS-b-P3HS) architectures. This is achieved by polymerizing tetrahydropyran-protected hydroxystyrene and subsequent deprotection under mild condition, which prevents the decomposition of acid-sensitive PDMS. Self-assembly behavior in bulk and thin-film of diblocks and triblocks are studied and compared. The functionality provided by the hydroxystyrene and siloxane blocks is further exploited to demonstrate a path to pattern transfer. The major contributions of this thesis are 1) development of a synthetic route that is compatible for BCPs with acid-sensitive Si-containing block, 2) development of non-equilibrium processing protocols based on solvent annealing to align the ultrahigh interaction parameter BCPs vertically to the substrate, and 3) deciphering the effect of architecture and dispersity on the BCP self-assembly.

Book Block Copolymers II

Download or read book Block Copolymers II written by Volker Abetz and published by Springer Science & Business Media. This book was released on 2005-12-02 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: . A.J. M ller, V. Balsamo, M.L. Arnal: Nucleation and Crystallization in Diblock and Triblock Copolymers.- 2 J.-F. Gohy: Block Copolymer Micelles.- 3 M.A. Hillmyer: Nanoporous Materials from Block Copolymer Precursors.- 4 M. Li, C. Coenjarts, C.K. Ober: Patternable Block Copolymers.-

Book Introduction to Microlithography

Download or read book Introduction to Microlithography written by L. F. Thompson and published by Academic. This book was released on 1994 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the theory, materials, and processes used in the lithographic process by which circuit elements are fabricated (it is these elements' decreasing size that has made possible the miniaturization of electronic devices). After a brief historical introduction, four major topics are discussed: the physics of the lithographic process, organic resist materials, resist processing, and plasma etching. The new edition reflects the many changes that have occurred since the 1983 publication of this tutorial/reference. Annotation copyright by Book News, Inc., Portland, OR

Book Block Co polymeric Nanocarriers  Design  Concept  and Therapeutic Applications

Download or read book Block Co polymeric Nanocarriers Design Concept and Therapeutic Applications written by Neeraj Mishra and published by Springer Nature. This book was released on 2023-11-29 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on current advancements in the field of block copolymers and covers design, concept, and various therapeutic applications in the drug delivery. It also reviews the use of block copolymers in drug delivery applications from the development of sustained release products to smart polymeric delivery systems such as stimuli-responsive polymeric systems, for example, thermosensitive, redox-sensitive, photo-sensitive, and enzyme-sensitive. The book further discusses the nano assemblies from amphiphilic block copolymers as nanomedicine platforms for diagnosis and therapy due to their relatively small size, high drug loading capacity, controlled drug release, in vivo stability, and prolonged blood circulation. The chapters also review the various patents and ongoing clinical trials on the applications, covering several important new concepts and findings in the field of block copolymers. The book is aimed at researchers, academicians, and industrial scientists involved in the development of drug-delivery systems based on polymers.

Book Surface nanopatterning by self assembly techniques  Nanosphere  and block copolymer lithography

Download or read book Surface nanopatterning by self assembly techniques Nanosphere and block copolymer lithography written by Katharina Brassat and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Das Design von innovativen neuen Materialien ist von großem Interesse in verschiedensten Forschungsgebieten, wie z.B. Bionanotechnologie, Halbleiterindustrie und Materialwissenschaften im Allgemeinen. In dieser Arbeit werden Selbstorganisationsprozesse zur Erzeugung von geordneten mikro- und nanoskopischen Strukturen auf Oberflächen untersucht. Die ortsselektiven Materialkontraste und Topographien, die die Nanostrukturen mit sich bringen, können zur Anordnung von Nanoobjekten in 1D und 2D verwendet werden.Nanokugellithographie, basierend auf konvektiver Selbstanordnung von kolloidalen Polymerkugeln, wird für die großflächige Herstellung geordneter Strukturen im sub-Mikrometer Größenbereich verwendet. Es wird gezeigt, wie Lochmasken mit einstellbarem Materialkontrast hergestellt werden können und wie durch gesteuerte Selbstanordnung von Nanokugeln 1D Anordnungen für die Herstellung von Nanogap-Elektroden entstehen.Blockcopolymerlithographie, ermöglicht die selbstorganisierte Nanostrukturierung im sub-20 nm Größenregime. Explizit wird die Herstellung von Nanoporen durch Phasenseparation von Blockcopolymeren auf unterschiedlichen Oberflächen untersucht. Die hergestellten Nanoporen werden als topographische Fallen für die Anordnung von Gold-Nanopartikeln genutzt.Abschließend wird die Kombination dieser beiden Selbstorganisationverfahren demonstriert, welche ein neuartiger Ansatz zur Herstellung hierarchisch modifizierter Oberflächen auf verschiedenen Größenskalen darstellt. ; ger

Book Mesoscale Modeling of Directed Self Assemblies of Block Copolymer Lithography

Download or read book Mesoscale Modeling of Directed Self Assemblies of Block Copolymer Lithography written by Shubham Dattaram Pinge and published by . This book was released on 2016 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCPs) self organize at molecular level building blocks and forming nano-structures with characteristic length scales. As these nano-structures resemble the lithographic features desired in the micro-electronics industry, they are used as a nanotemplate in the manufacture of micro-chips. This study focusses on the pillarpost guide method of directing self assemblies to form 'punch hole' lithographic nano-patterns. The work aims to elucidate the necessary conditions required to form hexagonal packed cylinders using di-block copolymers. It sheds lights on various factors that affect the BCP self assembly and how the morphology is altered due to these factors. These include biasing the surfaces (selective towards one of the BCP phase) and altering the BCP properties (chain length, volume fraction etc). The morphologies attained have been independently verified by experimental results obtained from our collaborators at EMD Performance Materials Group, NJ-USA. Apart from optimizing the morphology of the system, fundamental studies have been performed on the system. The behavior of the BCP chains is analyzed under a simple confinement between two flat substrates that selectively wets one of the phases. The morphology thus formed is studied with the polymer chain length being the reaction coordinate for a fixed critical confinement. The results obtained from the fundamental study has helped us in explaining the morphology formed in a more complex geometry like pillarpost guide that uses topography to confine the polymers. This in turn has proven to be of great benefit to optimally design the system and achieve the ideal nanolithographic patterns. iii.

Book Templated Self assembly for Complex Pattern Fabrication

Download or read book Templated Self assembly for Complex Pattern Fabrication written by Jae-Byum Chang and published by . This book was released on 2014 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-term goal of my Ph.D. study has been controlling the self-assembly of various materials using state-of-the-art nanofabrication techniques. Electron-beam lithography has been used for decades to generate nanoscale patterns, but its throughput is not high enough for fabricating sub-10-nm patterns over a large area. Templated block copolymer(BCP) self assembly is attractive for fabricating few-nanometer-scale structures at high throughput. On an unpattermed substrate, block copolymer self-assembly generates dense arrays of lines or dots without long-range order. Fortunately, physical features defined by electron lithography can guide the self-assembly of block copolymer. In our previous work, the orientation of cylindrical phase block copolymer was controlled simply by changing the distance between physical features, and resulting polymer patterns were analyzed by an image analysis program. Here, we first demonstrated high throughput sub-10-nm feature sizes by applying the same approach to a cylindrical morphology 16kg/mol PS-PDMS block copolymer. The half-pitch of the PDMS cylinders of this block copolymer film is 9 nm, so sub-10-nm structures can be fabricated. We also applied the similar approach to a triblock terpolymer to achieve dot patterns with square symmetry. To achieve a more complex pattern, electron-beam induced cross-linking of a block copolymer and second solvent-annealing process was used. By using this method, a line-dot hybrid pattern was achieved. Despite that the block copolymer self-assembly area had been heavily studied, researchers had yet to ascertain how to design nanostructures to achieve a desired target pattern using block copolymers. To address this problem, we developed a modular method that greatly simplifies the nanostructure design, and using this method, we achieved a circuit-like block-copolymer pattern over a large area. The key innovation is the use of a binary set of tiles that can be used to very simply cover the desired patterning area. Despite the simplicity of the approach, by exploiting neighbor-neighbor interactions of the tiles, a complex final pattern can be formed. The vision is thus one of programmability of patterning by using a simple instruction set. This development will thus be of interest to scientists and engineers across many fields involving self-assembly, including biomolecule, quantum-dot or nanowire positioning; algorithmic self-assembly; and integrated-circuit development. We applied this concept - controlling the assembly of materials using nanostructures - to a different material, protein. Single-molecule protein arrays are useful tools for studying biological phenomena at the single-molecule level, but have been developed only for a few specific proteins using the streptavidin-biotin complex as a linker. By using carefully designed gold nanopatterns and cysteine-gold interaction, we developed a process to make single-molecule protein arrays that can be used for patterning a broad range of proteins.

Book Advanced Materials for Next Generation Lithography

Download or read book Advanced Materials for Next Generation Lithography written by Evan Lawrence Schwartz and published by . This book was released on 2011 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The constant demand for increased circuit density and higher resolution patterning calls for simultaneous advancements in materials chemistry. A variety of possible approaches for next-generation lithography are explored, centering on the use of directly patternable self-assembling block copolymers, along with hafnium oxidebased nanoparticle photoresists. In one example of the first approach, a random copolymer brush layer of poly(styrene-ran-hydroxystyrene) was designed and synthesized to precisely tune the substrate/polymer surface energy for a lithographically patternable poly([alpha]methylstyrene-block-4-hydroxystyrene) (P[alpha]MS-b-PHOST) block copolymer. The surface was designed to avoid preferential wetting of either P[alpha]MS or PHOST domains to the substrate and orient the block copolymer domains vertically relative to the substrate. To neutralize the polymer/ vapor interface during solvent vapor processing, the film was exposed to a mixed solvent vapor of a defined polarity, creating vertical microdomains with long-range order. In the latter approach, hafnium oxide nanoparticles were covalently coated with a photo-reactive ligand, which allowed neighboring nanoparticles to form a crosslinked network upon exposure to ultraviolet light. The basic science of this new class of resist material is discussed. These negative-tone resists have so far demonstrated sub-50 nm resolution using 193nm interference lithography, and plasma etch resistance over thirteen times greater than PHOST under standard silicon etching conditions. In a combination of the two approaches, the co-assembly of the inorganic nanoparticles with the PHOST phase of P[alpha]MS-b-PHOST is shown. TEM and SAXS studies indicated the expansion of the microdomain periodicity upon nanoparticle incorporation. These block copolymer nanocomposite films offer enhanced functionality and a larger process window for subsequent pattern transfer into semiconductor substrates. In another example of co-assembly, phenolic molecular glass photoresists were blended with low molecular weight, triblock copolymer surfactants based on poly(ethylene oxide)(PEO). The miscibility of these blend components is shown to be a result of preferential hydrogen bonding between the hydroxyl groups attached to the molecular glass and the alkyl ether group of the PEO block, as shown by FTIR and DSC analysis. The blending resulted in an enhancement in segregation strength that led to the formation of sub-10nm self-assembled morphologies, as verified by SAXS. Options for the lithographic patterning of these blends are explored. Lastly, a combined additive and subtractive patterning technique is demonstrated that allows the deposition of multiple block copolymer films, of different domain sizes and pitches, on the same layer of the substrate. The approach used a semifluorinated negative-tone photoresist which is designed to resist intermixing when spin coated on top of a block copolymer film.