Download or read book Mastering OpenCV 3 written by Daniel Lelis Baggio and published by Packt Publishing Ltd. This book was released on 2017-04-28 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Computer Vision Projects About This Book Updated for OpenCV 3, this book covers new features that will help you unlock the full potential of OpenCV 3 Written by a team of 7 experts, each chapter explores a new aspect of OpenCV to help you make amazing computer-vision aware applications Project-based approach with each chapter being a complete tutorial, showing you how to apply OpenCV to solve complete problems Who This Book Is For This book is for those who have a basic knowledge of OpenCV and are competent C++ programmers. You need to have an understanding of some of the more theoretical/mathematical concepts, as we move quite quickly throughout the book. What You Will Learn Execute basic image processing operations and cartoonify an image Build an OpenCV project natively with Raspberry Pi and cross-compile it for Raspberry Pi.text Extend the natural feature tracking algorithm to support the tracking of multiple image targets on a video Use OpenCV 3's new 3D visualization framework to illustrate the 3D scene geometry Create an application for Automatic Number Plate Recognition (ANPR) using a support vector machine and Artificial Neural Networks Train and predict pattern-recognition algorithms to decide whether an image is a number plate Use POSIT for the six degrees of freedom head pose Train a face recognition database using deep learning and recognize faces from that database In Detail As we become more capable of handling data in every kind, we are becoming more reliant on visual input and what we can do with those self-driving cars, face recognition, and even augmented reality applications and games. This is all powered by Computer Vision. This book will put you straight to work in creating powerful and unique computer vision applications. Each chapter is structured around a central project and deep dives into an important aspect of OpenCV such as facial recognition, image target tracking, making augmented reality applications, the 3D visualization framework, and machine learning. You'll learn how to make AI that can remember and use neural networks to help your applications learn. By the end of the book, you will have created various working prototypes with the projects in the book and will be well versed with the new features of OpenCV3. Style and approach This book takes a project-based approach and helps you learn about the new features by putting them to work by implementing them in your own projects.
Download or read book Mastering OpenCV 4 written by Roy Shilkrot and published by Packt Publishing Ltd. This book was released on 2018-12-27 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work on practical computer vision projects covering advanced object detector techniques and modern deep learning and machine learning algorithms Key FeaturesLearn about the new features that help unlock the full potential of OpenCV 4Build face detection applications with a cascade classifier using face landmarksCreate an optical character recognition (OCR) model using deep learning and convolutional neural networksBook Description Mastering OpenCV, now in its third edition, targets computer vision engineers taking their first steps toward mastering OpenCV. Keeping the mathematical formulations to a solid but bare minimum, the book delivers complete projects from ideation to running code, targeting current hot topics in computer vision such as face recognition, landmark detection and pose estimation, and number recognition with deep convolutional networks. You’ll learn from experienced OpenCV experts how to implement computer vision products and projects both in academia and industry in a comfortable package. You’ll get acquainted with API functionality and gain insights into design choices in a complete computer vision project. You’ll also go beyond the basics of computer vision to implement solutions for complex image processing projects. By the end of the book, you will have created various working prototypes with the help of projects in the book and be well versed with the new features of OpenCV4. What you will learnBuild real-world computer vision problems with working OpenCV code samplesUncover best practices in engineering and maintaining OpenCV projectsExplore algorithmic design approaches for complex computer vision tasksWork with OpenCV’s most updated API (v4.0.0) through projectsUnderstand 3D scene reconstruction and Structure from Motion (SfM)Study camera calibration and overlay AR using the ArUco ModuleWho this book is for This book is for those who have a basic knowledge of OpenCV and are competent C++ programmers. You need to have an understanding of some of the more theoretical/mathematical concepts, as we move quite quickly throughout the book.
Download or read book Mastering OpenCV with Practical Computer Vision Projects written by Daniel Lélis Baggio and published by Packt Publishing Ltd. This book was released on 2012-12-03 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each chapter in the book is an individual project and each project is constructed with step-by-step instructions, clearly explained code, and includes the necessary screenshots. You should have basic OpenCV and C/C++ programming experience before reading this book, as it is aimed at Computer Science graduates, researchers, and computer vision experts widening their expertise.
Download or read book Mastering OpenCV 4 with Python written by Alberto Fernández Villán and published by Packt Publishing Ltd. This book was released on 2019-03-29 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Create advanced applications with Python and OpenCV, exploring the potential of facial recognition, machine learning, deep learning, web computing and augmented reality. Key FeaturesDevelop your computer vision skills by mastering algorithms in Open Source Computer Vision 4 (OpenCV 4) and PythonApply machine learning and deep learning techniques with TensorFlow and KerasDiscover the modern design patterns you should avoid when developing efficient computer vision applicationsBook Description OpenCV is considered to be one of the best open source computer vision and machine learning software libraries. It helps developers build complete projects in relation to image processing, motion detection, or image segmentation, among many others. OpenCV for Python enables you to run computer vision algorithms smoothly in real time, combining the best of the OpenCV C++ API and the Python language. In this book, you'll get started by setting up OpenCV and delving into the key concepts of computer vision. You'll then proceed to study more advanced concepts and discover the full potential of OpenCV. The book will also introduce you to the creation of advanced applications using Python and OpenCV, enabling you to develop applications that include facial recognition, target tracking, or augmented reality. Next, you'll learn machine learning techniques and concepts, understand how to apply them in real-world examples, and also explore their benefits, including real-time data production and faster data processing. You'll also discover how to translate the functionality provided by OpenCV into optimized application code projects using Python bindings. Toward the concluding chapters, you'll explore the application of artificial intelligence and deep learning techniques using the popular Python libraries TensorFlow, and Keras. By the end of this book, you'll be able to develop advanced computer vision applications to meet your customers' demands. What you will learnHandle files and images, and explore various image processing techniquesExplore image transformations, including translation, resizing, and croppingGain insights into building histogramsBrush up on contour detection, filtering, and drawingWork with Augmented Reality to build marker-based and markerless applicationsWork with the main machine learning algorithms in OpenCVExplore the deep learning Python libraries and OpenCV deep learning capabilitiesCreate computer vision and deep learning web applicationsWho this book is for This book is designed for computer vision developers, engineers, and researchers who want to develop modern computer vision applications. Basic experience of OpenCV and Python programming is a must.
Download or read book Learning OpenCV written by Gary R. Bradski and published by . This book was released on 2008 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: 本书介绍了计算机视觉,例证了如何迅速建立使计算机能“看”的应用程序,以及如何基于计算机获取的数据作出决策.
Download or read book Learning OpenCV 3 Computer Vision with Python written by Joe Minichino and published by Packt Publishing Ltd. This book was released on 2015-09-29 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the power of computer vision with Python using OpenCV About This Book Create impressive applications with OpenCV and Python Familiarize yourself with advanced machine learning concepts Harness the power of computer vision with this easy-to-follow guide Who This Book Is For Intended for novices to the world of OpenCV and computer vision, as well as OpenCV veterans that want to learn about what's new in OpenCV 3, this book is useful as a reference for experts and a training manual for beginners, or for anybody who wants to familiarize themselves with the concepts of object classification and detection in simple and understandable terms. Basic knowledge about Python and programming concepts is required, although the book has an easy learning curve both from a theoretical and coding point of view. What You Will Learn Install and familiarize yourself with OpenCV 3's Python API Grasp the basics of image processing and video analysis Identify and recognize objects in images and videos Detect and recognize faces using OpenCV Train and use your own object classifiers Learn about machine learning concepts in a computer vision context Work with artificial neural networks using OpenCV Develop your own computer vision real-life application In Detail OpenCV 3 is a state-of-the-art computer vision library that allows a great variety of image and video processing operations. Some of the more spectacular and futuristic features such as face recognition or object tracking are easily achievable with OpenCV 3. Learning the basic concepts behind computer vision algorithms, models, and OpenCV's API will enable the development of all sorts of real-world applications, including security and surveillance. Starting with basic image processing operations, the book will take you through to advanced computer vision concepts. Computer vision is a rapidly evolving science whose applications in the real world are exploding, so this book will appeal to computer vision novices as well as experts of the subject wanting to learn the brand new OpenCV 3.0.0. You will build a theoretical foundation of image processing and video analysis, and progress to the concepts of classification through machine learning, acquiring the technical know-how that will allow you to create and use object detectors and classifiers, and even track objects in movies or video camera feeds. Finally, the journey will end in the world of artificial neural networks, along with the development of a hand-written digits recognition application. Style and approach This book is a comprehensive guide to the brand new OpenCV 3 with Python to develop real-life computer vision applications.
Download or read book OpenCV 3 Computer Vision Application Programming Cookbook written by Robert Laganiere and published by Packt Publishing Ltd. This book was released on 2017-02-09 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recipes to help you build computer vision applications that make the most of the popular C++ library OpenCV 3 About This Book Written to the latest, gold-standard specification of OpenCV 3 Master OpenCV, the open source library of the computer vision community Master fundamental concepts in computer vision and image processing Learn about the important classes and functions of OpenCV with complete working examples applied to real images Who This Book Is For OpenCV 3 Computer Vision Application Programming Cookbook Third Edition is appropriate for novice C++ programmers who want to learn how to use the OpenCV library to build computer vision applications. It is also suitable for professional software developers who wish to be introduced to the concepts of computer vision programming. It can also be used as a companion book for university-level computer vision courses. It constitutes an excellent reference for graduate students and researchers in image processing and computer vision. What You Will Learn Install and create a program using the OpenCV library Process an image by manipulating its pixels Analyze an image using histograms Segment images into homogenous regions and extract meaningful objects Apply image filters to enhance image content Exploit the image geometry in order to relay different views of a pictured scene Calibrate the camera from different image observations Detect people and objects in images using machine learning techniques Reconstruct a 3D scene from images In Detail Making your applications see has never been easier with OpenCV. With it, you can teach your robot how to follow your cat, write a program to correctly identify the members of One Direction, or even help you find the right colors for your redecoration. OpenCV 3 Computer Vision Application Programming Cookbook Third Edition provides a complete introduction to the OpenCV library and explains how to build your first computer vision program. You will be presented with a variety of computer vision algorithms and exposed to important concepts in image and video analysis that will enable you to build your own computer vision applications. This book helps you to get started with the library, and shows you how to install and deploy the OpenCV library to write effective computer vision applications following good programming practices. You will learn how to read and write images and manipulate their pixels. Different techniques for image enhancement and shape analysis will be presented. You will learn how to detect specific image features such as lines, circles or corners. You will be introduced to the concepts of mathematical morphology and image filtering. The most recent methods for image matching and object recognition are described, and you'll discover how to process video from files or cameras, as well as how to detect and track moving objects. Techniques to achieve camera calibration and perform multiple-view analysis will also be explained. Finally, you'll also get acquainted with recent approaches in machine learning and object classification. Style and approach This book will arm you with the basics you need to start writing world-aware applications right from a pixel level all the way through to processing video sequences.
Download or read book OpenCV 3 Computer Vision with Python Cookbook written by Aleksei Spizhevoi and published by Packt Publishing Ltd. This book was released on 2018-03-23 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems ...
Download or read book Learning OpenCV 4 Computer Vision with Python 3 written by Joseph Howse and published by Packt Publishing Ltd. This book was released on 2020-02-20 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated for OpenCV 4 and Python 3, this book covers the latest on depth cameras, 3D tracking, augmented reality, and deep neural networks, helping you solve real-world computer vision problems with practical code Key Features Build powerful computer vision applications in concise code with OpenCV 4 and Python 3 Learn the fundamental concepts of image processing, object classification, and 2D and 3D tracking Train, use, and understand machine learning models such as Support Vector Machines (SVMs) and neural networks Book Description Computer vision is a rapidly evolving science, encompassing diverse applications and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You'll be able to put theory into practice by building apps with OpenCV 4 and Python 3. You'll start by understanding OpenCV 4 and how to set it up with Python 3 on various platforms. Next, you'll learn how to perform basic operations such as reading, writing, manipulating, and displaying still images, videos, and camera feeds. From taking you through image processing, video analysis, and depth estimation and segmentation, to helping you gain practice by building a GUI app, this book ensures you'll have opportunities for hands-on activities. Next, you'll tackle two popular challenges: face detection and face recognition. You'll also learn about object classification and machine learning concepts, which will enable you to create and use object detectors and classifiers, and even track objects in movies or video camera feed. Later, you'll develop your skills in 3D tracking and augmented reality. Finally, you'll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age. By the end of this book, you'll have the skills you need to execute real-world computer vision projects. What you will learn Install and familiarize yourself with OpenCV 4's Python 3 bindings Understand image processing and video analysis basics Use a depth camera to distinguish foreground and background regions Detect and identify objects, and track their motion in videos Train and use your own models to match images and classify objects Detect and recognize faces, and classify their gender and age Build an augmented reality application to track an image in 3D Work with machine learning models, including SVMs, artificial neural networks (ANNs), and deep neural networks (DNNs) Who this book is for If you are interested in learning computer vision, machine learning, and OpenCV in the context of practical real-world applications, then this book is for you. This OpenCV book will also be useful for anyone getting started with computer vision as well as experts who want to stay up-to-date with OpenCV 4 and Python 3. Although no prior knowledge of image processing, computer vision or machine learning is required, familiarity with basic Python programming is a must.
Download or read book Computer Vision with OpenCV 3 and Qt5 written by Amin Ahmadi Tazehkandi and published by Packt Publishing Ltd. This book was released on 2018-01-02 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Blend the power of Qt with OpenCV to build cross-platform computer vision applications Key Features ● Start creating robust applications with the power of OpenCV and Qt combined ● Learn from scratch how to develop cross-platform computer vision applications ● Accentuate your OpenCV applications by developing them with Qt Book Description Developers have been using OpenCV library to develop computer vision applications for a long time. However, they now need a more effective tool to get the job done and in a much better and modern way. Qt is one of the major frameworks available for this task at the moment. This book will teach you to develop applications with the combination of OpenCV 3 and Qt5, and how to create cross-platform computer vision applications. We’ll begin by introducing Qt, its IDE, and its SDK. Next you’ll learn how to use the OpenCV API to integrate both tools, and see how to configure Qt to use OpenCV. You’ll go on to build a full-fledged computer vision application throughout the book. Later, you’ll create a stunning UI application using the Qt widgets technology, where you’ll display the images after they are processed in an efficient way. At the end of the book, you’ll learn how to convert OpenCV Mat to Qt QImage. You’ll also see how to efficiently process images to filter them, transform them, detect or track objects as well as analyze video. You’ll become better at developing OpenCV applications. What you will learn ● Get an introduction to Qt IDE and SDK ● Be introduced to OpenCV and see how to communicate between OpenCV and Qt ● Understand how to create UI using Qt Widgets ● Learn to develop cross-platform applications using OpenCV 3 and Qt 5 ● Explore the multithreaded application development features of Qt5 ● Improve OpenCV 3 application development using Qt5 ● Build, test, and deploy Qt and OpenCV apps, either dynamically or statically ● See Computer Vision technologies such as filtering and transformation of images, detecting and matching objects, template matching, object tracking, video and motion analysis, and much more ● Be introduced to QML and Qt Quick for iOS and Android application development Who this book is for This book is for readers interested in building computer vision applications. Intermediate knowledge of C++ programming is expected. Even though no knowledge of Qt5 and OpenCV 3 is assumed, if you’re familiar with these frameworks, you’ll benefit.
Download or read book OpenCV 3 x with Python By Example written by Gabriel Garrido Calvo and published by Packt Publishing Ltd. This book was released on 2018-01-17 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the techniques for object recognition, 3D reconstruction, stereo imaging, and other computer vision applications using examples on different functions of OpenCV. Key Features Learn how to apply complex visual effects to images with OpenCV 3.x and Python Extract features from an image and use them to develop advanced applications Build algorithms to help you understand image content and perform visual searches Get to grips with advanced techniques in OpenCV such as machine learning, artificial neural network, 3D reconstruction, and augmented reality Book Description Computer vision is found everywhere in modern technology. OpenCV for Python enables us to run computer vision algorithms in real time. With the advent of powerful machines, we have more processing power to work with. Using this technology, we can seamlessly integrate our computer vision applications into the cloud. Focusing on OpenCV 3.x and Python 3.6, this book will walk you through all the building blocks needed to build amazing computer vision applications with ease. We start off by manipulating images using simple filtering and geometric transformations. We then discuss affine and projective transformations and see how we can use them to apply cool advanced manipulations to your photos like resizing them while keeping the content intact or smoothly removing undesired elements. We will then cover techniques of object tracking, body part recognition, and object recognition using advanced techniques of machine learning such as artificial neural network. 3D reconstruction and augmented reality techniques are also included. The book covers popular OpenCV libraries with the help of examples. This book is a practical tutorial that covers various examples at different levels, teaching you about the different functions of OpenCV and their actual implementation. By the end of this book, you will have acquired the skills to use OpenCV and Python to develop real-world computer vision applications. What you will learn Detect shapes and edges from images and videos How to apply filters on images and videos Use different techniques to manipulate and improve images Extract and manipulate particular parts of images and videos Track objects or colors from videos Recognize specific object or faces from images and videos How to create Augmented Reality applications Apply artificial neural networks and machine learning to improve object recognition Who this book is for This book is intended for Python developers who are new to OpenCV and want to develop computer vision applications with OpenCV and Python. This book is also useful for generic software developers who want to deploy computer vision applications on the cloud. It would be helpful to have some familiarity with basic mathematical concepts such as vectors, matrices, and so on.
Download or read book Computer Vision Projects with OpenCV and Python 3 written by Matthew Rever and published by Packt Publishing Ltd. This book was released on 2018-12-28 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain a working knowledge of advanced machine learning and explore Python’s powerful tools for extracting data from images and videos Key FeaturesImplement image classification and object detection using machine learning and deep learningPerform image classification, object detection, image segmentation, and other Computer Vision tasksCrisp content with a practical approach to solving real-world problems in Computer VisionBook Description Python is the ideal programming language for rapidly prototyping and developing production-grade codes for image processing and Computer Vision with its robust syntax and wealth of powerful libraries. This book will help you design and develop production-grade Computer Vision projects tackling real-world problems. With the help of this book, you will learn how to set up Anaconda and Python for the major OSes with cutting-edge third-party libraries for Computer Vision. You'll learn state-of-the-art techniques for classifying images, finding and identifying human postures, and detecting faces within videos. You will use powerful machine learning tools such as OpenCV, Dlib, and TensorFlow to build exciting projects such as classifying handwritten digits, detecting facial features,and much more. The book also covers some advanced projects, such as reading text from license plates from real-world images using Google’s Tesseract software, and tracking human body poses using DeeperCut within TensorFlow. By the end of this book, you will have the expertise required to build your own Computer Vision projects using Python and its associated libraries. What you will learnInstall and run major Computer Vision packages within PythonApply powerful support vector machines for simple digit classificationUnderstand deep learning with TensorFlowBuild a deep learning classifier for general imagesUse LSTMs for automated image captioningRead text from real-world imagesExtract human pose data from imagesWho this book is for Python programmers and machine learning developers who wish to build exciting Computer Vision projects using the power of machine learning and OpenCV will find this book useful. The only prerequisite for this book is that you should have a sound knowledge of Python programming.
Download or read book Learn OpenCV 4 by Building Projects written by David Millán Escrivá and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore OpenCV 4 to create visually appealing cross-platform computer vision applications Key FeaturesUnderstand basic OpenCV 4 concepts and algorithmsGrasp advanced OpenCV techniques such as 3D reconstruction, machine learning, and artificial neural networksWork with Tesseract OCR, an open-source library to recognize text in imagesBook Description OpenCV is one of the best open source libraries available, and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you’re completely new to computer vision, or have a basic understanding of its concepts, Learn OpenCV 4 by Building Projects – Second edition will be your guide to understanding OpenCV concepts and algorithms through real-world examples and projects. You’ll begin with the installation of OpenCV and the basics of image processing. Then, you’ll cover user interfaces and get deeper into image processing. As you progress through the book, you'll learn complex computer vision algorithms and explore machine learning and face detection. The book then guides you in creating optical flow video analysis and background subtraction in complex scenes. In the concluding chapters, you'll also learn about text segmentation and recognition and understand the basics of the new and improved deep learning module. By the end of this book, you'll be familiar with the basics of Open CV, such as matrix operations, filters, and histograms, and you'll have mastered commonly used computer vision techniques to build OpenCV projects from scratch. What you will learnInstall OpenCV 4 on your operating systemCreate CMake scripts to compile your C++ applicationUnderstand basic image matrix formats and filtersExplore segmentation and feature extraction techniquesRemove backgrounds from static scenes to identify moving objects for surveillanceEmploy various techniques to track objects in a live videoWork with new OpenCV functions for text detection and recognition with TesseractGet acquainted with important deep learning tools for image classificationWho this book is for If you are a software developer with a basic understanding of computer vision and image processing and want to develop interesting computer vision applications with OpenCV, Learn OpenCV 4 by Building Projects for you. Prior knowledge of C++ will help you understand the concepts covered in this book.
Download or read book OpenCV 4 with Python Blueprints written by Dr. Menua Gevorgyan and published by Packt Publishing Ltd. This book was released on 2020-03-20 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with traditional computer vision algorithms and deep learning approaches, and build real-world applications with OpenCV and other machine learning frameworks Key FeaturesUnderstand how to capture high-quality image data, detect and track objects, and process the actions of animals or humansImplement your learning in different areas of computer visionExplore advanced concepts in OpenCV such as machine learning, artificial neural network, and augmented realityBook Description OpenCV is a native cross-platform C++ library for computer vision, machine learning, and image processing. It is increasingly being adopted in Python for development. This book will get you hands-on with a wide range of intermediate to advanced projects using the latest version of the framework and language, OpenCV 4 and Python 3.8, instead of only covering the core concepts of OpenCV in theoretical lessons. This updated second edition will guide you through working on independent hands-on projects that focus on essential OpenCV concepts such as image processing, object detection, image manipulation, object tracking, and 3D scene reconstruction, in addition to statistical learning and neural networks. You’ll begin with concepts such as image filters, Kinect depth sensor, and feature matching. As you advance, you’ll not only get hands-on with reconstructing and visualizing a scene in 3D but also learn to track visually salient objects. The book will help you further build on your skills by demonstrating how to recognize traffic signs and emotions on faces. Later, you’ll understand how to align images, and detect and track objects using neural networks. By the end of this OpenCV Python book, you’ll have gained hands-on experience and become proficient at developing advanced computer vision apps according to specific business needs. What you will learnGenerate real-time visual effects using filters and image manipulation techniques such as dodging and burningRecognize hand gestures in real-time and perform hand-shape analysis based on the output of a Microsoft Kinect sensorLearn feature extraction and feature matching to track arbitrary objects of interestReconstruct a 3D real-world scene using 2D camera motion and camera reprojection techniquesDetect faces using a cascade classifier and identify emotions in human faces using multilayer perceptronsClassify, localize, and detect objects with deep neural networksWho this book is for This book is for intermediate-level OpenCV users who are looking to enhance their skills by developing advanced applications. Familiarity with OpenCV concepts and Python libraries, and basic knowledge of the Python programming language are assumed.
Download or read book Building Computer Vision Projects with OpenCV 4 and C written by David Millán Escrivá and published by Packt Publishing Ltd. This book was released on 2019-03-26 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delve into practical computer vision and image processing projects and get up to speed with advanced object detection techniques and machine learning algorithms Key FeaturesDiscover best practices for engineering and maintaining OpenCV projectsExplore important deep learning tools for image classificationUnderstand basic image matrix formats and filtersBook Description OpenCV is one of the best open source libraries available and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. This Learning Path is your guide to understanding OpenCV concepts and algorithms through real-world examples and activities. Through various projects, you'll also discover how to use complex computer vision and machine learning algorithms and face detection to extract the maximum amount of information from images and videos. In later chapters, you'll learn to enhance your videos and images with optical flow analysis and background subtraction. Sections in the Learning Path will help you get to grips with text segmentation and recognition, in addition to guiding you through the basics of the new and improved deep learning modules. By the end of this Learning Path, you will have mastered commonly used computer vision techniques to build OpenCV projects from scratch. This Learning Path includes content from the following Packt books: Mastering OpenCV 4 - Third Edition by Roy Shilkrot and David Millán EscriváLearn OpenCV 4 By Building Projects - Second Edition by David Millán Escrivá, Vinícius G. Mendonça, and Prateek JoshiWhat you will learnStay up-to-date with algorithmic design approaches for complex computer vision tasksWork with OpenCV's most up-to-date API through various projectsUnderstand 3D scene reconstruction and Structure from Motion (SfM)Study camera calibration and overlay augmented reality (AR) using the ArUco moduleCreate CMake scripts to compile your C++ applicationExplore segmentation and feature extraction techniquesRemove backgrounds from static scenes to identify moving objects for surveillanceWork with new OpenCV functions to detect and recognize text with TesseractWho this book is for If you are a software developer with a basic understanding of computer vision and image processing and want to develop interesting computer vision applications with OpenCV, this Learning Path is for you. Prior knowledge of C++ and familiarity with mathematical concepts will help you better understand the concepts in this Learning Path.
Download or read book OpenCV By Example written by Prateek Joshi and published by Packt Publishing Ltd. This book was released on 2016-01-22 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhance your understanding of Computer Vision and image processing by developing real-world projects in OpenCV 3 About This Book Get to grips with the basics of Computer Vision and image processing This is a step-by-step guide to developing several real-world Computer Vision projects using OpenCV 3 This book takes a special focus on working with Tesseract OCR, a free, open-source library to recognize text in images Who This Book Is For If you are a software developer with a basic understanding of Computer Vision and image processing and want to develop interesting Computer Vision applications with Open CV, this is the book for you. Knowledge of C++ is required. What You Will Learn Install OpenCV 3 on your operating system Create the required CMake scripts to compile the C++ application and manage its dependencies Get to grips with the Computer Vision workflows and understand the basic image matrix format and filters Understand the segmentation and feature extraction techniques Remove backgrounds from a static scene to identify moving objects for video surveillance Track different objects in a live video using various techniques Use the new OpenCV functions for text detection and recognition with Tesseract In Detail Open CV is a cross-platform, free-for-use library that is primarily used for real-time Computer Vision and image processing. It is considered to be one of the best open source libraries that helps developers focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you are completely new to the concept of Computer Vision or have a basic understanding of it, this book will be your guide to understanding the basic OpenCV concepts and algorithms through amazing real-world examples and projects. Starting from the installation of OpenCV on your system and understanding the basics of image processing, we swiftly move on to creating optical flow video analysis or text recognition in complex scenes, and will take you through the commonly used Computer Vision techniques to build your own Open CV projects from scratch. By the end of this book, you will be familiar with the basics of Open CV such as matrix operations, filters, and histograms, as well as more advanced concepts such as segmentation, machine learning, complex video analysis, and text recognition. Style and approach This book is a practical guide with lots of tips, and is closely focused on developing Computer vision applications with OpenCV. Beginning with the fundamentals, the complexity increases with each chapter. Sample applications are developed throughout the book that you can execute and use in your own projects.
Download or read book OpenCV 3 0 Computer Vision with Java written by Daniel Lélis Baggio and published by Packt Publishing Ltd. This book was released on 2015-07-30 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: OpenCV 3.0 Computer Vision with Java is a practical tutorial guide that explains fundamental tasks from computer vision while focusing on Java development. This book will teach you how to set up OpenCV for Java and handle matrices using the basic operations of image processing such as filtering and image transforms. It will also help you learn how to use Haar cascades for tracking faces and to detect foreground and background regions with the help of a Kinect device. It will even give you insights into server-side OpenCV. Each chapter is presented with several projects that are ready to use. The functionality of these projects is found in many classes that allow developers to understand computer vision principles and rapidly extend or customize the projects for their needs.