EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mastering Machine Learning with scikit learn

Download or read book Mastering Machine Learning with scikit learn written by Gavin Hackeling and published by Packt Publishing Ltd. This book was released on 2017-07-24 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient models using scikit-learn Practical guide to master your basics and learn from real life applications of machine learning Who This Book Is For This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required. What You Will Learn Review fundamental concepts such as bias and variance Extract features from categorical variables, text, and images Predict the values of continuous variables using linear regression and K Nearest Neighbors Classify documents and images using logistic regression and support vector machines Create ensembles of estimators using bagging and boosting techniques Discover hidden structures in data using K-Means clustering Evaluate the performance of machine learning systems in common tasks In Detail Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. Style and approach This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and models, then apply your learnings to real-life problems.

Book Hands On Machine Learning with Scikit Learn  Keras  and TensorFlow

Download or read book Hands On Machine Learning with Scikit Learn Keras and TensorFlow written by Aurélien Géron and published by "O'Reilly Media, Inc.". This book was released on 2019-09-05 with total page 851 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Book Machine Learning with PyTorch and Scikit Learn

Download or read book Machine Learning with PyTorch and Scikit Learn written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2022-02-25 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.

Book Python Machine Learning

    Book Details:
  • Author : Sebastian Raschka
  • Publisher : Packt Publishing Ltd
  • Release : 2015-09-23
  • ISBN : 1783555149
  • Pages : 455 pages

Download or read book Python Machine Learning written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2015-09-23 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Book Mastering Machine Learning Algorithms

Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.

Book Mastering Machine Learning Algorithms

Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2018-05-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

Book Machine Learning Algorithms

Download or read book Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2017-07-24 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.

Book The The Machine Learning Workshop

Download or read book The The Machine Learning Workshop written by Hyatt Saleh and published by Packt Publishing Ltd. This book was released on 2020-07-22 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take a comprehensive and step-by-step approach to understanding machine learning Key FeaturesDiscover how to apply the scikit-learn uniform API in all types of machine learning modelsUnderstand the difference between supervised and unsupervised learning modelsReinforce your understanding of machine learning concepts by working on real-world examplesBook Description Machine learning algorithms are an integral part of almost all modern applications. To make the learning process faster and more accurate, you need a tool flexible and powerful enough to help you build machine learning algorithms quickly and easily. With The Machine Learning Workshop, you'll master the scikit-learn library and become proficient in developing clever machine learning algorithms. The Machine Learning Workshop begins by demonstrating how unsupervised and supervised learning algorithms work by analyzing a real-world dataset of wholesale customers. Once you've got to grips with the basics, you’ll develop an artificial neural network using scikit-learn and then improve its performance by fine-tuning hyperparameters. Towards the end of the workshop, you'll study the dataset of a bank's marketing activities and build machine learning models that can list clients who are likely to subscribe to a term deposit. You'll also learn how to compare these models and select the optimal one. By the end of The Machine Learning Workshop, you'll not only have learned the difference between supervised and unsupervised models and their applications in the real world, but you'll also have developed the skills required to get started with programming your very own machine learning algorithms. What you will learnUnderstand how to select an algorithm that best fits your dataset and desired outcomeExplore popular real-world algorithms such as K-means, Mean-Shift, and DBSCANDiscover different approaches to solve machine learning classification problemsDevelop neural network structures using the scikit-learn packageUse the NN algorithm to create models for predicting future outcomesPerform error analysis to improve your model's performanceWho this book is for The Machine Learning Workshop is perfect for machine learning beginners. You will need Python programming experience, though no prior knowledge of scikit-learn and machine learning is necessary.

Book Machine Learning with scikit learn Quick Start Guide

Download or read book Machine Learning with scikit learn Quick Start Guide written by Kevin Jolly and published by Packt Publishing Ltd. This book was released on 2018-10-30 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deploy supervised and unsupervised machine learning algorithms using scikit-learn to perform classification, regression, and clustering. Key FeaturesBuild your first machine learning model using scikit-learnTrain supervised and unsupervised models using popular techniques such as classification, regression and clusteringUnderstand how scikit-learn can be applied to different types of machine learning problemsBook Description Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides. This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models. Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions. What you will learnLearn how to work with all scikit-learn's machine learning algorithmsInstall and set up scikit-learn to build your first machine learning modelEmploy Unsupervised Machine Learning Algorithms to cluster unlabelled data into groupsPerform classification and regression machine learningUse an effective pipeline to build a machine learning project from scratchWho this book is for This book is for aspiring machine learning developers who want to get started with scikit-learn. Intermediate knowledge of Python programming and some fundamental knowledge of linear algebra and probability will help.

Book Mastering Predictive Analytics with scikit learn and TensorFlow

Download or read book Mastering Predictive Analytics with scikit learn and TensorFlow written by Alvaro Fuentes and published by Packt Publishing Ltd. This book was released on 2018-09-29 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn advanced techniques to improve the performance and quality of your predictive models Key FeaturesUse ensemble methods to improve the performance of predictive analytics modelsImplement feature selection, dimensionality reduction, and cross-validation techniquesDevelop neural network models and master the basics of deep learningBook Description Python is a programming language that provides a wide range of features that can be used in the field of data science. Mastering Predictive Analytics with scikit-learn and TensorFlow covers various implementations of ensemble methods, how they are used with real-world datasets, and how they improve prediction accuracy in classification and regression problems. This book starts with ensemble methods and their features. You will see that scikit-learn provides tools for choosing hyperparameters for models. As you make your way through the book, you will cover the nitty-gritty of predictive analytics and explore its features and characteristics. You will also be introduced to artificial neural networks and TensorFlow, and how it is used to create neural networks. In the final chapter, you will explore factors such as computational power, along with improvement methods and software enhancements for efficient predictive analytics. By the end of this book, you will be well-versed in using deep neural networks to solve common problems in big data analysis. What you will learnUse ensemble algorithms to obtain accurate predictionsApply dimensionality reduction techniques to combine features and build better modelsChoose the optimal hyperparameters using cross-validationImplement different techniques to solve current challenges in the predictive analytics domainUnderstand various elements of deep neural network (DNN) modelsImplement neural networks to solve both classification and regression problemsWho this book is for Mastering Predictive Analytics with scikit-learn and TensorFlow is for data analysts, software engineers, and machine learning developers who are interested in implementing advanced predictive analytics using Python. Business intelligence experts will also find this book indispensable as it will teach them how to progress from basic predictive models to building advanced models and producing more accurate predictions. Prior knowledge of Python and familiarity with predictive analytics concepts are assumed.

Book Machine Learning

Download or read book Machine Learning written by Stephen Marsland and published by CRC Press. This book was released on 2011-03-23 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditional books on machine learning can be divided into two groups- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but

Book Hands On Machine Learning with Scikit learn and Scientific Python Toolkits

Download or read book Hands On Machine Learning with Scikit learn and Scientific Python Toolkits written by Tarek Amr and published by . This book was released on 2020-07-24 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Book Machine Learning in Action

Download or read book Machine Learning in Action written by Peter Harrington and published by Simon and Schuster. This book was released on 2012-04-03 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the Book A machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interestingor useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many. Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification. Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside A no-nonsense introduction Examples showing common ML tasks Everyday data analysis Implementing classic algorithms like Apriori and Adaboos Table of Contents PART 1 CLASSIFICATION Machine learning basics Classifying with k-Nearest Neighbors Splitting datasets one feature at a time: decision trees Classifying with probability theory: naïve Bayes Logistic regression Support vector machines Improving classification with the AdaBoost meta algorithm PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION Predicting numeric values: regression Tree-based regression PART 3 UNSUPERVISED LEARNING Grouping unlabeled items using k-means clustering Association analysis with the Apriori algorithm Efficiently finding frequent itemsets with FP-growth PART 4 ADDITIONAL TOOLS Using principal component analysis to simplify data Simplifying data with the singular value decomposition Big data and MapReduce

Book Scikit Learn Cookbook   Second Edition

Download or read book Scikit Learn Cookbook Second Edition written by Julian Avila and published by . This book was released on 2017-11-15 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to use scikit-learn operations and functions for Machine Learning and deep learning applications.About This Book* Handle a variety of machine learning tasks effortlessly by leveraging the power of scikit-learn* Perform supervised and unsupervised learning with ease, and evaluate the performance of your model* Practical, easy to understand recipes aimed at helping you choose the right machine learning algorithmWho This Book Is ForData Analysts already familiar with Python but not so much with scikit-learn, who want quick solutions to the common machine learning problems will find this book to be very useful. If you are a Python programmer who wants to take a dive into the world of machine learning in a practical manner, this book will help you too.What You Will Learn* Build predictive models in minutes by using scikit-learn* Understand the differences and relationships between Classification and Regression, two types of Supervised Learning.* Use distance metrics to predict in Clustering, a type of Unsupervised Learning* Find points with similar characteristics with Nearest Neighbors.* Use automation and cross-validation to find a best model and focus on it for a data product* Choose among the best algorithm of many or use them together in an ensemble.* Create your own estimator with the simple syntax of sklearn* Explore the feed-forward neural networks available in scikit-learnIn DetailPython is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. This book includes walk throughs and solutions to the common as well as the not-so-common problems in machine learning, and how scikit-learn can be leveraged to perform various machine learning tasks effectively.The second edition begins with taking you through recipes on evaluating the statistical properties of data and generates synthetic data for machine learning modelling. As you progress through the chapters, you will comes across recipes that will teach you to implement techniques like data pre-processing, linear regression, logistic regression, K-NN, Naive Bayes, classification, decision trees, Ensembles and much more. Furthermore, you'll learn to optimize your models with multi-class classification, cross validation, model evaluation and dive deeper in to implementing deep learning with scikit-learn. Along with covering the enhanced features on model section, API and new features like classifiers, regressors and estimators the book also contains recipes on evaluating and fine-tuning the performance of your model.By the end of this book, you will have explored plethora of features offered by scikit-learn for Python to solve any machine learning problem you come across.Style and ApproachThis book consists of practical recipes on scikit-learn that target novices as well as intermediate users. It goes deep into the technical issues, covers additional protocols, and many more real-live examples so that you are able to implement it in your daily life scenarios.

Book Scikit Learn Cookbook

Download or read book Scikit Learn Cookbook written by Trent Hauck and published by . This book was released on 2014-10-31 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you're a data scientist already familiar with Python but not Scikit-Learn, or are familiar with other programming languages like R and want to take the plunge with the gold standard of Python machine learning libraries, then this is the book for you.

Book Proceedings of the international conference on Machine Learning

Download or read book Proceedings of the international conference on Machine Learning written by John Anderson and published by . This book was released on 19?? with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: