Download or read book Transport Phenomena written by Robert S. Brodkey and published by Brodkey Publishing. This book was released on 2003-02 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part II covers applications in greater detail. The three transport phenomena--heat, mass, and momentum transfer--are treated in depth through simultaneous (or parallel) developments.
Download or read book Momentum Transfer in Fluids written by Wm.H. Corcoran and published by Elsevier. This book was released on 2012-12-02 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Momentum Transfer in Fluids provides information pertinent to fluid mechanics. This book discusses several topics related to the movement of fluids, including boundary-layer analysis, statistical treatment of turbulence, as well as laminar and turbulent shear-flow. Comprised of seven chapters, this book starts with an overview of the physical nature of momentum and describes the application of this concept to systems of variable weight, which are useful in the prediction of the physical behavior of fluids in motion. This text then explores the fundamental properties and the macroscopic aspects of turbulent flow. Other chapters present the significance and utility of mixing length and other macroscopic turbulence parameters. This book discusses as well the prediction of the velocity and friction as functions of position in the flowing stream. The final chapter deals with the qualitative aspects of boundary flows for compressible and incompressible fluids. This book is a valuable resource for scientists and chemical engineers.
Download or read book Fluid Flow Phenomena written by Paolo Orlandi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the simulation of the incompressible Navier-Stokes equations for laminar and turbulent flows. The book is limited to explaining and employing the finite difference method. It furnishes a large number of source codes which permit to play with the Navier-Stokes equations and to understand the complex physics related to fluid mechanics. Numerical simulations are useful tools to understand the complexity of the flows, which often is difficult to derive from laboratory experiments. This book, then, can be very useful to scholars doing laboratory experiments, since they often do not have extra time to study the large variety of numerical methods; furthermore they cannot spend more time in transferring one of the methods into a computer language. By means of numerical simulations, for example, insights into the vorticity field can be obtained which are difficult to obtain by measurements. This book can be used by graduate as well as undergraduate students while reading books on theoretical fluid mechanics; it teaches how to simulate the dynamics of flow fields on personal computers. This will provide a better way of understanding the theory. Two chapters on Large Eddy Simulations have been included, since this is a methodology that in the near future will allow more universal turbulence models for practical applications. The direct simulation of the Navier-Stokes equations (DNS) is simple by finite-differences, that are satisfactory to reproduce the dynamics of turbulent flows. A large part of the book is devoted to the study of homogeneous and wall turbulent flows. In the second chapter the elementary concept of finite difference is given to solve parabolic and elliptical partial differential equations. In successive chapters the 1D, 2D, and 3D Navier-Stokes equations are solved in Cartesian and cylindrical coordinates. Finally, Large Eddy Simulations are performed to check the importance of the subgrid scale models. Results for turbulent and laminar flows are discussed, with particular emphasis on vortex dynamics. This volume will be of interest to graduate students and researchers wanting to compare experiments and numerical simulations, and to workers in the mechanical and aeronautic industries.
Download or read book Spectral Methods in Fluid Dynamics written by Claudio Canuto and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use.
Download or read book Flow and Heat or Mass Transfer in the Chemical Process Industry written by Dimitrios V. Papavassiliou and published by MDPI. This book was released on 2018-09-28 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Flow and Heat or Mass Transfer in the Chemical Process Industry" that was published in Fluids
Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Download or read book Transport Phenomena in Heat and Mass Transfer written by J.A. Reizes and published by Elsevier. This book was released on 2012-12-02 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical, numerical and experimental studies of transport phenomena in heat and mass transfer are reported in depth in this volume. Papers are presented which review and discuss the most recent developments in areas such as: Mass transfer; Cooling of electronic components; Phase change processes; Instrumentation techniques; Numerical methods; Heat transfer in rotating machinery; Hypersonic flows; and Industrial applications. Bringing together the experience of specialists in these fields, the volume will be of interest to researchers and practising engineers who wish to enhance their knowledge in these rapidly developing areas.
Download or read book Fluid Mechanics and Statistical Methods in Engineering written by Hugh L. Dryden and published by University of Pennsylvania Press. This book was released on 2016-11-11 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a volume in the Penn Press Anniversary Collection. To mark its 125th anniversary in 2015, the University of Pennsylvania Press rereleased more than 1,100 titles from Penn Press's distinguished backlist from 1899-1999 that had fallen out of print. Spanning an entire century, the Anniversary Collection offers peer-reviewed scholarship in a wide range of subject areas.
Download or read book VDI Heat Atlas written by VDI Gesellschaft and published by Springer Science & Business Media. This book was released on 2010-07-21 with total page 1608 pages. Available in PDF, EPUB and Kindle. Book excerpt: For more than 50 years, the Springer VDI Heat Atlas has been an indispensable working means for engineers dealing with questions of heat transfer. Featuring 50% more content, this new edition covers most fields of heat transfer in industrial and engineering applications. It presents the interrelationships between basic scientific methods, experimental techniques, model-based analysis and their transfer to technical applications.
Download or read book Gas Transfer at Water Surfaces written by W. Brutsaert and published by Springer Science & Business Media. This book was released on 1983-12-31 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transfer across the surface of environmental waters is of interest as an important phase in the geophysical and natural biochemical cycles of numer ous substances; indeed it governs the transition, one way or the other, be tween the dissolved state in the water and the gaseous state in the atmo sphere. Especially with increasing population and industrialization, gas transfer at water surfaces has become a critical factor in the understanding of the various pathways of wastes in the environment and of their engineering management. This interfacial mass transfer is, by its very nature, highly complex. The air and the water are usually in turbulent motion, and the interface be tween them is irregular, and disturbed by waves, sometimes accompanied by breaking, spray and bubble formation. Thus the transfer involves a wide variety of physical phenomena occurring over a wide range of scales. As a consequence, scientists and engineers from diverse disciplines and problem areas, have approached the problem, often with greatly differing analytical and experimental techniques and methodologies.
Download or read book Buoyancy induced Flows and Transport written by Benjamin Gebhart and published by CRC Press. This book was released on 1988 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Turbulent Shear Flows 8 written by Franz Durst and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.
Download or read book Modeling of Gas to Particle Mass Transfer in Turbulent Flows written by Sean C. Garrick and published by Springer. This book was released on 2017-06-29 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Brief focuses on the dispersion of high-porosity particles, their entrainment into the vapor-laden stream, and the condensation of vapor onto the particles. The authors begin with a simple/static problem, focusing on transport within the particle. They go on to consider the high-resolution simulation of particles in a turbulent flow and the time-dependent evolution of the fluid-particle fields. Finally, they examine the more computationally-affordable large-eddy simulation of gas-to-particle mass-transfer. The book ends with a summary and challenges as well as directions for the area.
Download or read book Fluid Mechanics Heat Transfer and Mass Transfer written by K. S. Raju and published by John Wiley & Sons. This book was released on 2011-04-20 with total page 1422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book.
Download or read book Turbulence in Open Channel Flows written by Hiroji Nakagawa and published by Routledge. This book was released on 2017-10-02 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review of open channel turbulence, focusing especially on certain features stemming from the presence of the free surface and the bed of a river. Part one presents the statistical theory of turbulence; Part two addresses the coherent structures in open-channel flows and boundary layers.
Download or read book Nonlinear Theory of Continuous Media written by A. Cemal Eringen and published by . This book was released on 1962 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Microhydrodynamics written by Sangtae Kim and published by Butterworth-Heinemann. This book was released on 2013-09-24 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microhydrodynamics: Principles and Selected Applications presents analytical and numerical methods for describing motion of small particles suspended in viscous fluids. The text first covers the fundamental principles of low-Reynolds-number flow, including the governing equations and fundamental theorems; the dynamics of a single particle in a flow field; and hydrodynamic interactions between suspended particles. Next, the book deals with the advances in the mathematical and computational aspects of viscous particulate flows that point to innovations for large-scale simulations on parallel computers. The book will be of great use to students in engineering and applied mathematics. Students and practitioners of chemistry will also benefit from this book.