Download or read book Probability with Martingales written by David Williams and published by Cambridge University Press. This book was released on 1991-02-14 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.
Download or read book Martingale Limit Theory and Its Application written by P. Hall and published by Academic Press. This book was released on 2014-07-10 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.
Download or read book Brownian Motion Martingales and Stochastic Calculus written by Jean-François Le Gall and published by Springer. This book was released on 2016-04-28 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.
Download or read book Theory of Martingales written by Robert Liptser and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 806 pages. Available in PDF, EPUB and Kindle. Book excerpt: One service mathematics has rc:ndered the 'Et moi, "', si j'avait su comment CD revenir, je n'y serais point alle. ' human race. It has put common SCIIJC back Jules Verne where it belongs. on the topmost shelf next to tbe dusty canister 1abdled 'discarded non- The series is divergent; tberefore we may be sense'. able to do sometbing witb it Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science ... '; 'One service category theory has rendered mathematics ... '. All arguably true_ And all statements obtainable this way form part of the raison d'etre of this series_ This series, Mathematics and Its ApplicatiOns, started in 1977. Now that over one hundred volumes have appeared it seems opportune to reexamine its scope_ At the time I wrote "Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches.
Download or read book Continuous Martingales and Brownian Motion written by Daniel Revuz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a magnificent book! Its purpose is to describe in considerable detail a variety of techniques used by probabilists in the investigation of problems concerning Brownian motion....This is THE book for a capable graduate student starting out on research in probability: the effect of working through it is as if the authors are sitting beside one, enthusiastically explaining the theory, presenting further developments as exercises." –BULLETIN OF THE L.M.S.
Download or read book Measures Integrals and Martingales written by René L. Schilling and published by Cambridge University Press. This book was released on 2005-11-10 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability.
Download or read book Brownian Motion and Martingales in Analysis written by Richard Durrett and published by Wadsworth Publishing Company. This book was released on 1984 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Random Walk Brownian Motion and Martingales written by Rabi Bhattacharya and published by Springer Nature. This book was released on 2021-09-20 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
Download or read book Continuous Exponential Martingales and BMO written by Norihiko Kazamaki and published by Springer. This book was released on 2006-11-15 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: In three chapters on Exponential Martingales, BMO-martingales, and Exponential of BMO, this book explains in detail the beautiful properties of continuous exponential martingales that play an essential role in various questions concerning the absolute continuity of probability laws of stochastic processes. The second and principal aim is to provide a full report on the exciting results on BMO in the theory of exponential martingales. The reader is assumed to be familiar with the general theory of continuous martingales.
Download or read book Martingale Methods in Financial Modelling written by Marek Musiela and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained treatment of the theory and practice of option pricing. The role of martingale methods in financial modeling is exposed. The emphasis is on using arbitrage-free models already accepted by the market as well as on building the new ones. Standard calls and puts together with numerous examples of exotic options such as barriers and quantos, for example on stocks, indices, currencies and interest rates are analysed. The importance of choosing a convenient numeraire in price calculations is explained. Mathematical and financial language is used so as to bring mathematicians closer to practical problems of finance and presenting to the industry useful maths tools.
Download or read book Martingale Methods in Statistics written by Yoichi Nishiyama and published by CRC Press. This book was released on 2021-11-24 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Martingale Methods in Statistics provides a unique introduction to statistics of stochastic processes written with the author’s strong desire to present what is not available in other textbooks. While the author chooses to omit the well-known proofs of some of fundamental theorems in martingale theory by making clear citations instead, the author does his best to describe some intuitive interpretations or concrete usages of such theorems. On the other hand, the exposition of relatively new theorems in asymptotic statistics is presented in a completely self-contained way. Some simple, easy-to-understand proofs of martingale central limit theorems are included. The potential readers include those who hope to build up mathematical bases to deal with high-frequency data in mathematical finance and those who hope to learn the theoretical background for Cox’s regression model in survival analysis. A highlight of the monograph is Chapters 8-10 dealing with Z-estimators and related topics, such as the asymptotic representation of Z-estimators, the theory of asymptotically optimal inference based on the LAN concept and the unified approach to the change point problems via "Z-process method". Some new inequalities for maxima of finitely many martingales are presented in the Appendix. Readers will find many tips for solving concrete problems in modern statistics of stochastic processes as well as in more fundamental models such as i.i.d. and Markov chain models.
Download or read book Martingales and Financial Mathematics in Discrete Time written by Benoîte de Saporta and published by John Wiley & Sons. This book was released on 2022-01-26 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time. The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors. Martingales and Financial Mathematics in Discrete Time is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance
Download or read book Concentration Inequalities for Sums and Martingales written by Bernard Bercu and published by Springer. This book was released on 2015-09-29 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide an overview of historical and recent results on concentration inequalities for sums of independent random variables and for martingales. The first chapter is devoted to classical asymptotic results in probability such as the strong law of large numbers and the central limit theorem. Our goal is to show that it is really interesting to make use of concentration inequalities for sums and martingales. The second chapter deals with classical concentration inequalities for sums of independent random variables such as the famous Hoeffding, Bennett, Bernstein and Talagrand inequalities. Further results and improvements are also provided such as the missing factors in those inequalities. The third chapter concerns concentration inequalities for martingales such as Azuma-Hoeffding, Freedman and De la Pena inequalities. Several extensions are also provided. The fourth chapter is devoted to applications of concentration inequalities in probability and statistics.
Download or read book Stochastic Calculus and Applications written by Samuel N. Cohen and published by Birkhäuser. This book was released on 2015-11-18 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to work with stochastic calculus as well as with its applications."–Zentralblatt (from review of the First Edition)
Download or read book Stochastic Analysis in Discrete and Continuous Settings written by Nicolas Privault and published by Springer. This book was released on 2009-07-14 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.
Download or read book Peacocks and Associated Martingales with Explicit Constructions written by Francis Hirsch and published by Springer Science & Business Media. This book was released on 2011-05-24 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings. They are developed in eight chapters, with about a hundred of exercises.
Download or read book Derivation and Martingales written by Charles A. Hayes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Part I of this report the pointwise derivation of scalar set functions is investigated, first along the lines of R. DE POSSEL (abstract derivation basis) and A. P. MORSE (blankets); later certain concrete situations (e. g. , the interval basis) are studied. The principal tool is a Vitali property, whose precise form depends on the derivation property studied. The "halo" (defined at the beginning of Part I, Ch. IV) properties can serve to establish a Vitali property, or sometimes produce directly a derivation property. The main results established are the theorem of JESSEN-MARCINKIEWICZ-ZYGMUND (Part I, Ch. V) and the theorem of A. P. MORSE on the universal derivability of star blankets (Ch. VI) . . In Part II, points are at first discarded; the setting is somatic. It opens by treating an increasing stochastic basis with directed index sets (Th. I. 3) on which premartingales, semimartingales and martingales are defined. Convergence theorems, due largely to K. KRICKEBERG, are obtained using various types of convergence: stochastic, in the mean, in Lp-spaces, in ORLICZ spaces, and according to the order relation. We may mention in particular Th. II. 4. 7 on the stochastic convergence of a submartingale of bounded variation. To each theorem for martingales and semi-martingales there corresponds a theorem in the atomic case in the theory of cell (abstract interval) functions. The derivates concerned are global. Finally, in Ch.