EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Martingale Methods in Financial Modelling

Download or read book Martingale Methods in Financial Modelling written by Marek Musiela and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained treatment of the theory and practice of option pricing. The role of martingale methods in financial modeling is exposed. The emphasis is on using arbitrage-free models already accepted by the market as well as on building the new ones. Standard calls and puts together with numerous examples of exotic options such as barriers and quantos, for example on stocks, indices, currencies and interest rates are analysed. The importance of choosing a convenient numeraire in price calculations is explained. Mathematical and financial language is used so as to bring mathematicians closer to practical problems of finance and presenting to the industry useful maths tools.

Book Continuous time Stochastic Control and Optimization with Financial Applications

Download or read book Continuous time Stochastic Control and Optimization with Financial Applications written by Huyên Pham and published by Springer Science & Business Media. This book was released on 2009-05-28 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Book Numerical Methods for Stochastic Control Problems in Continuous Time

Download or read book Numerical Methods for Stochastic Control Problems in Continuous Time written by Harold Kushner and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.

Book Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems

Download or read book Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems written by Harold Kushner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with several closely related topics concerning approxima tions and perturbations of random processes and their applications to some important and fascinating classes of problems in the analysis and design of stochastic control systems and nonlinear filters. The basic mathematical methods which are used and developed are those of the theory of weak con vergence. The techniques are quite powerful for getting weak convergence or functional limit theorems for broad classes of problems and many of the techniques are new. The original need for some of the techniques which are developed here arose in connection with our study of the particular applica tions in this book, and related problems of approximation in control theory, but it will be clear that they have numerous applications elsewhere in weak convergence and process approximation theory. The book is a continuation of the author's long term interest in problems of the approximation of stochastic processes and its applications to problems arising in control and communication theory and related areas. In fact, the techniques used here can be fruitfully applied to many other areas. The basic random processes of interest can be described by solutions to either (multiple time scale) Ito differential equations driven by wide band or state dependent wide band noise or which are singularly perturbed. They might be controlled or not, and their state values might be fully observable or not (e. g. , as in the nonlinear filtering problem).

Book Stochastic Controls

    Book Details:
  • Author : Jiongmin Yong
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461214661
  • Pages : 459 pages

Download or read book Stochastic Controls written by Jiongmin Yong and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

Book PDE and Martingale Methods in Option Pricing

Download or read book PDE and Martingale Methods in Option Pricing written by Andrea Pascucci and published by Springer Science & Business Media. This book was released on 2011-04-15 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.

Book Stochastic Control Theory

Download or read book Stochastic Control Theory written by Makiko Nisio and published by Springer. This book was released on 2014-11-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.

Book The Splendors and Miseries of Martingales

Download or read book The Splendors and Miseries of Martingales written by Laurent Mazliak and published by Springer Nature. This book was released on 2022-10-17 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past eighty years, martingales have become central in the mathematics of randomness. They appear in the general theory of stochastic processes, in the algorithmic theory of randomness, and in some branches of mathematical statistics. Yet little has been written about the history of this evolution. This book explores some of the territory that the history of the concept of martingales has transformed. The historian of martingales faces an immense task. We can find traces of martingale thinking at the very beginning of probability theory, because this theory was related to gambling, and the evolution of a gambler’s holdings as a result of following a particular strategy can always be understood as a martingale. More recently, in the second half of the twentieth century, martingales became important in the theory of stochastic processes at the very same time that stochastic processes were becoming increasingly important in probability, statistics and more generally in various applied situations. Moreover, a history of martingales, like a history of any other branch of mathematics, must go far beyond an account of mathematical ideas and techniques. It must explore the context in which the evolution of ideas took place: the broader intellectual milieux of the actors, the networks that already existed or were created by the research, even the social and political conditions that favored or hampered the circulation and adoption of certain ideas. This books presents a stroll through this history, in part a guided tour, in part a random walk. First, historical studies on the period from 1920 to 1950 are presented, when martingales emerged as a distinct mathematical concept. Then insights on the period from 1950 into the 1980s are offered, when the concept showed its value in stochastic processes, mathematical statistics, algorithmic randomness and various applications.

Book Encyclopaedia of Mathematics

Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 1988 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.

Book Stochastic Processes  Finance And Control  A Festschrift In Honor Of Robert J Elliott

Download or read book Stochastic Processes Finance And Control A Festschrift In Honor Of Robert J Elliott written by Samuel N Cohen and published by World Scientific. This book was released on 2012-08-10 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.

Book Theory of Stochastic Differential Equations with Jumps and Applications

Download or read book Theory of Stochastic Differential Equations with Jumps and Applications written by Rong SITU and published by Springer Science & Business Media. This book was released on 2006-05-06 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.

Book Controlled Markov Processes and Viscosity Solutions

Download or read book Controlled Markov Processes and Viscosity Solutions written by Wendell H. Fleming and published by Springer Science & Business Media. This book was released on 2006-02-04 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.

Book Stochastic Control Theory and Stochastic Differential Systems

Download or read book Stochastic Control Theory and Stochastic Differential Systems written by Michael Kohlmann and published by Springer. This book was released on 1979 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Simulation and Monte Carlo Methods

Download or read book Stochastic Simulation and Monte Carlo Methods written by Carl Graham and published by Springer Science & Business Media. This book was released on 2013-07-16 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.

Book Handbook of Stochastic Analysis and Applications

Download or read book Handbook of Stochastic Analysis and Applications written by D. Kannan and published by CRC Press. This book was released on 2001-10-23 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to general theories of stochastic processes and modern martingale theory. The volume focuses on consistency, stability and contractivity under geometric invariance in numerical analysis, and discusses problems related to implementation, simulation, variable step size algorithms, and random number generation.

Book Option Pricing and Portfolio Optimization

Download or read book Option Pricing and Portfolio Optimization written by Ralf Korn and published by American Mathematical Soc.. This book was released on 2001 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and working with the current models of financial markets requires a sound knowledge of the mathematical tools and ideas from which they are built. Banks and financial houses all over the world recognize this and are avidly recruiting mathematicians, physicists, and other scientists with these skills. The mathematics involved in modern finance springs from the heart of probability and analysis: the Itô calculus, stochastic control, differential equations, martingales, and so on. The authors give rigorous treatments of these topics, while always keeping the applications in mind. Thus, the way in which the mathematics is developed is governed by the way it will be used, rather than by the goal of optimal generality. Indeed, most of purely mathematical topics are treated in extended "excursions" from the applications into the theory. Thus, with the main topic of financial modelling and optimization in view, the reader also obtains a self-contained and complete introduction to the underlying mathematics. This book is specifically designed as a graduate textbook. It could be used for the second part of a course in probability theory, as it includes as applied introduction to the basics of stochastic processes (martingales and Brownian motion) and stochastic calculus. It would also be suitable for a course in continuous-time finance that assumes familiarity with stochastic processes. The prerequisites are basic probability theory and calculus. Some background in stochastic processes would be useful, but not essential.

Book Martingale Limit Theory and Its Application

Download or read book Martingale Limit Theory and Its Application written by P. Hall and published by Academic Press. This book was released on 2014-07-10 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.