EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Manipulating the Flow Through Wind Farms to Increase Their Efficiency

Download or read book Manipulating the Flow Through Wind Farms to Increase Their Efficiency written by Daniel Houck and published by . This book was released on 2020 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind farms are adversely affected by the very wakes that are a necessary by-product of their energy extraction process. While turbines that are most upstream produce at or near their maximum power production, those downstream suffer from the reduction in available energy and increase in turbulence created by the upstream turbines. Methods to combat these effects generally either attempt to increase the available energy to the downstream turbines or mitigate the effects of the upstream turbines' wakes. Wake dissipation also requires entrainment of energy from the ambient flow into the wake, so, in fact, wake mitigation and increasing available energy are two sides of the same coin. To explore methods that would improve wind farm efficiency, we performed model-scale wind turbine experiments while recording their power production and measuring the flow. Accurately measuring power production is the subject of the first paper in which a high-accuracy torque transducer was designed and validated to facilitate mechanical power measurements with very low uncertainty. This transducer was necessary to obtain non-intrusive measurements of torque via a calibration to a turbine's current output. In the second paper, a wake mitigation technique, called dynamic induction control, was studied. With this technique, the set point of the turbine is periodically varied in an effort to trigger or accelerate instabilities in its wake. Contrary to existing literature that indicated that the oscillation frequency would be critical, results showed that the amplitude of oscillation, which corresponds to the turbine's rotation rate, had the largest effect. We theorize that switching to higher rotation rates reduces the pitch of the tip vortex helices promoting more destructive interactions among them. Accelerating the decay of the tip vortices allows for greater mixing with the ambient flow and ultimately accelerated wake decay compared to conventional steady operation. Finally, in the last paper, static axial induction control was studied with an array of five turbines while measuring the flow and turbine power in an effort to understand the fluid dynamics associated with the increase in power. In static axial induction control (AIC), upstream turbines are derated in an effort to maximize the total power production of the array, though not all turbines operate at their individual optima. While data from the power production of individual turbines and flow measurements are difficult to interpret, the total power production of the treatment using AIC was successfully increased. Flow measurements indicate that unharvested energy in the array was redistributed to the edges of the wakes as hypothesized.

Book Improving the Efficiency of Wind Farm Turbines Using External Airfoils

Download or read book Improving the Efficiency of Wind Farm Turbines Using External Airfoils written by Shujaut Bader and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind turbine efficiency typically focuses on the shape, orientation, or stiffness of the turbine blades. In this thesis, the focus is instead on using static fixed airfoils in proximity to the wind turbine to control the airflow coming out of the turbine. These control devices have three beneficial effects. (1) They gather air from "higher up" where the air is moving faster on average (and therefore has more kinetic energy in it). (2) They throw the used (and slowed down air) downwards. This means that any turbines in the wind farm behind the lead turbines do not get "stale" air. (3) These control devices provide a large stabilizing lifting force for floating off-shore turbines. In this study, Reynolds-Averaged Navier-Stokes (RANS) simulations of an aligned array of two wind turbines along with various designs of these control devices is studied. The recovery in the velocity at the inlet plane of downstream turbine due to the controlled flow facilitated by these devices is measured with respect to the average streamwise wind velocity at the inlet plane of upstream turbine. A customized numerical solver was written in C++ using Opensource Field Operation And Manipulation (OpenFOAM) to model the turbines as actuator discs with axial induction and to generate an inlet velocity field similar to a turbulent atmospheric boundary layer (ABL). All the design configurations use a streamlined (airfoil shaped) structure, at an angle of attack carefully selected to prevent flow separation depending upon its location around the turbine. For strong wake displacement, the devices are placed in proximity to the upstream wind turbine so as to facilitate a substantial downwash of the faster wind from upper layers of the ABL and at the same time deflect the wake out of the way of the downstream turbine. Also, the pressure coefficient across the upstream turbine augmented with these devices can sometimes become more negative than a bare turbine, which in turn increases the mass flow rate of air passing through it, thereby also increasing the leading turbine's efficiency slightly.

Book Wind Energy Explained

Download or read book Wind Energy Explained written by James F. Manwell and published by John Wiley & Sons. This book was released on 2010-09-14 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)

Book Wave  Wind  and Current Power Generation

Download or read book Wave Wind and Current Power Generation written by Victor M. Lyatkher and published by John Wiley & Sons. This book was released on 2022-03-29 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: WAVE AND CURRENT POWER GENERATION Written by two well-known and respected engineers, this exciting new volume is the most up-to-date and comprehensive text on power generation from waves and water currents available today to engineers, scientists, and students, also covering the latest advances in wind power generation. As the world turns further and further away from fossil fuel energy sources, unconventional and renewable sources of energy, such as power generation from water sources and wind energy, are becoming more and more important. Hydropower has been around for decades, but this book suggests new methods that are more cost-effective and less intrusive to the environment for creating power sources from rivers, the tides, and other sources of water. Written by two experts in the field, it also covers wind energy and how it can be more efficiently harnessed. This groundbreaking new volume deals with modern problems of using wind energy, namely, jet currents in the atmosphere and the energy of water flows of rivers, ocean and sea currents, including those caused by tides. Wind and water-based energy sources form an essential part of the renewable energy solution. The engineering measures discussed in this book prove, for example, that by reducing the rate of dissipation of atmospheric surface low-level currents by only one percent, it is possible to provide all of humanity with energy at rates twice the per capita consumption of the wealthiest countries. Whether for the veteran engineer or the engineering student, this book is a must-have for any library. Wave, Wind and Current Power Generation: Is one of the first books available on wave and current power generation containing information for engineers to use for solving day-to-day problems Assists engineers in rapidly analyzing problems and finding effective design methods and select mechanical specifications Provides methods and proven fundamentals of process design for practical application Helps achieve optimum operations and process conditions and shows how to translate design fundamentals into mechanical equipment specifications Covers not just wave and current power generation, but also has a section on wind power generation and a comprehensive overview of renewable energy in the world today

Book Fundamental and Advanced Topics in Wind Power

Download or read book Fundamental and Advanced Topics in Wind Power written by Rupp Carriveau and published by BoD – Books on Demand. This book was released on 2011-07-05 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the fastest growing source of energy in the world, wind has a very important role to play in the global energy mix. This text covers a spectrum of leading edge topics critical to the rapidly evolving wind power industry. The reader is introduced to the fundamentals of wind energy aerodynamics; then essential structural, mechanical, and electrical subjects are discussed. The book is composed of three sections that include the Aerodynamics and Environmental Loading of Wind Turbines, Structural and Electromechanical Elements of Wind Power Conversion, and Wind Turbine Control and System Integration. In addition to the fundamental rudiments illustrated, the reader will be exposed to specialized applied and advanced topics including magnetic suspension bearing systems, structural health monitoring, and the optimized integration of wind power into micro and smart grids.

Book Analysis of Model free Control of Wind Farms Using Large eddy Simulations

Download or read book Analysis of Model free Control of Wind Farms Using Large eddy Simulations written by Umberto Ciri and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind farms are clusters of wind turbines deployed over a relatively small area. During operations, the wake from upstream turbines may impinge on trailing turbines causing a decrease in power production. Wind farm control strategies aim at mitigating the effect of wake interactions. In this dissertation, model-free control strategies for wind farm power maximization have been evaluated using numerical simulations of the flow through wind farms. A model-free approach does not require a priori assumptions on the physical system, but learns on-line the system dynamics, avoiding modeling uncertainties. The control strategies are based on extremum-seeking control (ESC), a real-time gradient-based optimization algorithm. Either the turbine generator torque or the rotor yaw angle is used as the control parameter tuned by ESC to optimize the wind farm power production. The generator torque adjusts the turbine angular speed and the momentum deficit in the trailing wake, while the yaw angle serves to vary the direction of the wake and avoid trailing turbines. We first consider several implementations of ESC and assess their performances and practical feasibility. Both torque- and yaw-based ESC enhance power production, but the latter has a larger margin for improvement. For idealised turbine arrays, ESC achieves a potential power improvement of at least 7–8% compared to operations with design settings for an isolated turbine. After this calibration, we perform an optimization study for a real wind farm and obtain a quantitative evaluation of the impact of the control strategy in annual energy production. Large-eddy simulations with rotating actuator disk are used, in the first place, to provide a virtual wind farm to test the control algorithms. Additionally, the numerical data are investigated to gain a physical insight on the mechanisms underlying the performance improvement and broaden the impact of the optimization.

Book Understanding Wind Power Technology

Download or read book Understanding Wind Power Technology written by Alois Schaffarczyk and published by John Wiley & Sons. This book was released on 2014-04-10 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy technology has progressed enormously over the last decade. In coming years it will continue to develop in terms of power ratings, performance and installed capacity of large wind turbines worldwide, with exciting developments in offshore installations. Designed to meet the training needs of wind engineers, this introductory text puts wind energy in context, from the natural resource to the assessment of cost effectiveness and bridges the gap between theory and practice. The thorough coverage spans the scientific basics, practical implementations and the modern state of technology used in onshore and offshore wind farms for electricity generation. Key features: provides in-depth treatment of all systems associated with wind energy, including the aerodynamic and structural aspects of blade design, the flow of energy and loads through the wind turbine, the electrical components and power electronics including control systems explains the importance of wind resource assessment techniques, site evaluation and ecology with a focus of project planning and operation describes the integration of wind farms into the electric grid and includes a whole chapter dedicated to offshore wind farms includes questions in each chapter for readers to test their knowledge Written by experts with deep experience in research, teaching and industry, this text conveys the importance of wind energy in the international energy-policy debate, and offers clear insight into the subject for postgraduates and final year undergraduate students studying all aspects of wind engineering. Understanding Wind Power Systems is also an authoritative resource for engineers designing and developing wind energy systems, energy policy makers, environmentalists, and economists in the renewable energy sector.

Book Fundamentals of Wind Farm Aerodynamic Layout Design

Download or read book Fundamentals of Wind Farm Aerodynamic Layout Design written by Farschad Torabi and published by Elsevier. This book was released on 2022-01-26 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Wind Farm Aerodynamic Layout Design, Volume Four provides readers with effective wind farm design and layout guidance through algorithm optimization, going beyond other references and general approaches in literature. Focusing on interactions of wake models, designers can combine numerical schemes presented in this book which also considers wake models' effects and problems on layout optimization in order to simulate and enhance wind farm designs. Covering the aerodynamic modeling and simulation of wind farms, the book's authors include experimental tests supporting modeling simulations and tutorials on the simulation of wind turbines. In addition, the book includes a CFD technique designed to be more computationally efficient than currently available techniques, making this book ideal for industrial engineers in the wind industry who need to produce an accurate simulation within limited timeframes. Features novel CFD modeling Offers global case studies for turbine wind farm layouts Includes tutorials on simulation of wind turbine using OpenFoam

Book Advances in Wind Power

Download or read book Advances in Wind Power written by Rupp Carriveau and published by BoD – Books on Demand. This book was released on 2012-11-21 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's wind energy industry is at a crossroads. Global economic instability has threatened or eliminated many financial incentives that have been important to the development of specific markets. Now more than ever, this essential element of the world energy mosaic will require innovative research and strategic collaborations to bolster the industry as it moves forward. This text details topics fundamental to the efficient operation of modern commercial farms and highlights advanced research that will enable next-generation wind energy technologies. The book is organized into three sections, Inflow and Wake Influences on Turbine Performance, Turbine Structural Response, and Power Conversion, Control and Integration. In addition to fundamental concepts, the reader will be exposed to comprehensive treatments of topics like wake dynamics, analysis of complex turbine blades, and power electronics in small-scale wind turbine systems.

Book 2nd International Conference on Smart Sustainable Materials and Technologies  ICSSMT 2023

Download or read book 2nd International Conference on Smart Sustainable Materials and Technologies ICSSMT 2023 written by M. Sumesh and published by Springer Nature. This book was released on with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Grid and Market Integration of Large Scale Wind Farms Using Advanced Wind Power Forecasting  Technical and Energy Economic Aspects

Download or read book Grid and Market Integration of Large Scale Wind Farms Using Advanced Wind Power Forecasting Technical and Energy Economic Aspects written by Ümit Cali and published by kassel university press GmbH. This book was released on 2011 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wind Energy Design

    Book Details:
  • Author : Thomas Corke
  • Publisher : CRC Press
  • Release : 2018-04-27
  • ISBN : 1351601202
  • Pages : 326 pages

Download or read book Wind Energy Design written by Thomas Corke and published by CRC Press. This book was released on 2018-04-27 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind Energy Systems is designed for undergraduate engineering courses, with a focus on multidisciplinary design of a wind energy system. The text covers basic wind power concepts and components - wind characteristics and modeling, rotor aerodynamics, lightweight flexible structures, wind farms, aerodynamics, wind turbine control, acoustics, energy storage, and economics. These topics are applied to produce a new conceptual wind energy design, showing the interplay of various design aspects in a complete system. An ongoing case study demonstrates the integration of various component topics, and MATLAB examples are included to show computerized design analysis procedures and techniques.

Book Wind Farm Dynamics and Power Optimization in Realistic Atmospheric Boundary Layer Conditions

Download or read book Wind Farm Dynamics and Power Optimization in Realistic Atmospheric Boundary Layer Conditions written by Michael Frederick Howland and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of wind farms within realistic atmospheric boundary layer (ABL) conditions is critical to understand the governing physics of the system and to design optimal operational protocols. Aerodynamic wake interactions between individual wind turbines typically reduce total wind farm energy production 10-20% and increase the cost of electricity for this resource. Further, in large wind farms, the collective farm efficiency is in part dictated by the interaction between the wind farm and the turbulent ABL and, correspondingly, the vertical transport of kinetic energy into the turbine array. Coriolis forces, arising from the projection of Earth's rotation into a non-inertial rotating Earth-fixed frame, modify the interaction of a wind farm with the ABL. The traditional approximation made in typical ABL simulations assumes that the horizontal component of Earth's rotation is negligible in the atmospheric boundary layer. When including the horizontal component of Earth's rotation, the boundary layer and wind farm physics are a function of the geostrophic wind direction. The influence of the geostrophic wind direction on a wind farm atmospheric boundary layer was characterized using conventionally neutral and stable boundary layer large eddy simulations (LES). In the Northern hemisphere, geostrophic winds from west-to-east establish the horizontal component of Earth's rotation as a sink term in the shear Reynolds stress budget whereas the horizontal component manifests as a source term for east-to-west geostrophic winds. As a result, the magnitude of entrainment of mean kinetic energy into a wind turbine array is modified by the direction of the geostrophic wind, and correspondingly, the boundary layer height and wind speed and direction profiles depend on the geostrophic wind direction. Historically, wind farm control protocols have optimized the performance of individual wind turbines which results in aerodynamic wake interactions and a reduction in wind farm efficiency. Considering the wind farm as a collective, a physics- and data-driven wake steering control method to increase the power production of wind farms is developed. Upwind turbines, which generate turbulent energy-deficit wake regions which impinge on downwind generates, are intentionally yaw misaligned with respect to the incident ABL wind. While the yaw misaligned turbine may produce less power than in yaw aligned operation, the downwind generators may significantly enhance their production, increasing the collective power for the farm. The wake steering method developed combines a physics-based engineering wake model with state estimation techniques based on the assimilation of the wind farm power production data, which is readily available for control decisions at operational wind farms. Analytic gradients are derived from the wake model and leveraged for efficient yaw misalignment set-point optimization. The open-loop wake steering control methodology was tested in a multi-turbine array at a utility-scale operational wind farm, where it statistically significantly increased the power production over standard operation. The analytic gradient-based wind farm power optimization methodology developed can optimize the yaw misalignment angles for large wind farms on the order of seconds, enabling online real-time control. The dynamics of the ABL range from microscale features on the order of meters to mesoscale meteorological scales on the order of hundreds of kilometers. As a result of the broad range of scales and diversity of competing forces, the wind farm interaction with the turbulent ABL is a complex dynamical system, necessitating closed-loop control which is able to dynamically adapt to the evolving wind conditions. In order to rapidly design and improve dynamic closed-loop wind farm controllers, we developed wind farm LES capabilities which incorporate Coriolis and stratification effects and which permit the experimentation of real-time control strategies. Dynamic, closed-loop wake steering controllers are tested in simulations with full Coriolis effects and, altogether, the results indicate that closed-loop wake steering control can significantly increase wind farm power production over greedy operation provided that site-specific wind farm data is assimilated into the optimal control model.

Book Wind Power

    Book Details:
  • Author : Victor M. Lyatkher
  • Publisher : John Wiley & Sons
  • Release : 2013-12-03
  • ISBN : 1118721136
  • Pages : 225 pages

Download or read book Wind Power written by Victor M. Lyatkher and published by John Wiley & Sons. This book was released on 2013-12-03 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date and thorough treatment of the technologies, practical applications, and future of wind power, with the pros and cons and technical intricacies of various types of wind turbines and wind power prediction With the demand for energy outstripping availability from conventional sources such as fossil fuels, new sources of energy must be found. Wind power is the most mature of all of the renewable or alternative sources of energy being widely used today. With many old wind turbines becoming obsolete or in need of replacement, new methods and materials for building turbines are constantly being sought after, and troubleshooting, from an engineering perspective, is paramount to the operational efficiency of turbines currently in use. Wind Power: Turbine Design, Selection, and Optimization: Details the technical attributes of various types of wind turbines, including new collinear windmills, orthogonal windmills, non-vibration VAWT wind turbines, and others Covers all the updated protocols for wind power and its applications Offers a thorough explanation of the current and future state of wind power Is suitable not only as a reference for the engineer working with wind power but as a textbook for graduate students, postdoctoral students, and researchers Wind power is one of the fastest-growing, oldest, and "greenest" of the major sources of renewable energy that has been developed, with more efficient and cost-effective technologies and materials now constantly being sought for turbines and the equipment used with them. Here is a comprehensive and thorough review of the engineering pros and cons of using different kinds of wind turbines in different environments, including offshore. With full technical knowledge, engineers, managers, and other decision-makers in the wind energy industry can make more informed decisions about increasing capacity, cost-efficiency, and equipment longevity. Covering the various types of wind turbines available, such as new collinear windmills, orthogonal turbines, and others, this highly technical treatment of wind turbines offers engineers, students, and researchers insight into the practical applications of these turbines and their potential for maximum efficiency.

Book Decision and Control in Hybrid Wind Farms

Download or read book Decision and Control in Hybrid Wind Farms written by Harsh S. Dhiman and published by Springer Nature. This book was released on 2019-09-28 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on two of the most important aspects of wind farm operation: decisions and control. The first part of the book deals with decision-making processes, and explains that hybrid wind farm operation is governed by a set of alternatives that the wind farm operator must choose from in order to achieve optimal delivery of wind power to the utility grid. This decision-making is accompanied by accurate forecasts of wind speed, which must be known beforehand. Errors in wind forecasting can be compensated for by pumping power from a reserve capacity to the grid using a battery energy storage system (BESS). Alternatives based on penalty cost are assessed using certain criteria, and MCDM methods are used to evaluate the best choice. Further, considering the randomness in the dynamic phenomenon in wind farms, a fuzzy MCDM approach is applied during the decision-making process to evaluate the best alternative for hybrid wind farm operation. Case studies from wind farms in the USA are presented, together with numerical solutions to the problem. In turn, the second part deals with the control aspect, and especially with yaw angle control, which facilitates power maximization at wind farms. A novel transfer function-based methodology is presented that controls the wake center of the upstream turbine(s); lidar-based numerical simulation is carried out for wind farm layouts; and an adaptive control strategy is implemented to achieve the desired yaw angle for upstream turbines. The proposed methodology is tested for two wind farm layouts. Wake management is also implemented for hybrid wind farms where BESS life enhancement is studied. The effect of yaw angle on the operational cost of BESS is assessed, and case studies for wind farm datasets from the USA and Denmark are discussed. Overall, the book provides a comprehensive guide to decision and control aspects for hybrid wind farms, which are particularly important from an industrial standpoint.