EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Malliavin Calculus and Stochastic Analysis

Download or read book Malliavin Calculus and Stochastic Analysis written by Frederi Viens and published by Springer Science & Business Media. This book was released on 2013-02-15 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: The stochastic calculus of variations of Paul Malliavin (1925 - 2010), known today as the Malliavin Calculus, has found many applications, within and beyond the core mathematical discipline. Stochastic analysis provides a fruitful interpretation of this calculus, particularly as described by David Nualart and the scores of mathematicians he influences and with whom he collaborates. Many of these, including leading stochastic analysts and junior researchers, presented their cutting-edge research at an international conference in honor of David Nualart's career, on March 19-21, 2011, at the University of Kansas, USA. These scholars and other top-level mathematicians have kindly contributed research articles for this refereed volume.

Book Introduction to Stochastic Analysis and Malliavin Calculus

Download or read book Introduction to Stochastic Analysis and Malliavin Calculus written by Giuseppe Da Prato and published by Springer. This book was released on 2014-07-01 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an introductory course on differential stochastic equations and Malliavin calculus. The material of the book has grown out of a series of courses delivered at the Scuola Normale Superiore di Pisa (and also at the Trento and Funchal Universities) and has been refined over several years of teaching experience in the subject. The lectures are addressed to a reader who is familiar with basic notions of measure theory and functional analysis. The first part is devoted to the Gaussian measure in a separable Hilbert space, the Malliavin derivative, the construction of the Brownian motion and Itô's formula. The second part deals with differential stochastic equations and their connection with parabolic problems. The third part provides an introduction to the Malliavin calculus. Several applications are given, notably the Feynman-Kac, Girsanov and Clark-Ocone formulae, the Krylov-Bogoliubov and Von Neumann theorems. In this third edition several small improvements are added and a new section devoted to the differentiability of the Feynman-Kac semigroup is introduced. A considerable number of corrections and improvements have been made.

Book Stochastic Analysis

Download or read book Stochastic Analysis written by Paul Malliavin and published by Springer. This book was released on 2015-06-12 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 5 independent sections, this book accounts recent main developments of stochastic analysis: Gross-Stroock Sobolev space over a Gaussian probability space; quasi-sure analysis; anticipate stochastic integrals as divergence operators; principle of transfer from ordinary differential equations to stochastic differential equations; Malliavin calculus and elliptic estimates; stochastic Analysis in infinite dimension.

Book Stochastic Analysis for Poisson Point Processes

Download or read book Stochastic Analysis for Poisson Point Processes written by Giovanni Peccati and published by Springer. This book was released on 2016-07-07 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolving field, offering a rigorous yet lively presentation of its many facets.

Book Malliavin Calculus for L  vy Processes with Applications to Finance

Download or read book Malliavin Calculus for L vy Processes with Applications to Finance written by Giulia Di Nunno and published by Springer Science & Business Media. This book was released on 2008-10-08 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Malliavin calculus as a generalization of the classical non-anticipating Ito calculus to an anticipating setting. It presents the development of the theory and its use in new fields of application.

Book Stochastic Analysis

    Book Details:
  • Author : Hiroyuki Matsumoto
  • Publisher : Cambridge University Press
  • Release : 2017
  • ISBN : 110714051X
  • Pages : 359 pages

Download or read book Stochastic Analysis written by Hiroyuki Matsumoto and published by Cambridge University Press. This book was released on 2017 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing the Itô calculus and Malliavin calculus in tandem, this book crystallizes modern day stochastic analysis into a single volume.

Book The Malliavin Calculus and Related Topics

Download or read book The Malliavin Calculus and Related Topics written by David Nualart and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The origin of this book lies in an invitation to give a series of lectures on Malliavin calculus at the Probability Seminar of Venezuela, in April 1985. The contents of these lectures were published in Spanish in [176]. Later these notes were completed and improved in two courses on Malliavin cal culus given at the University of California at Irvine in 1986 and at Ecole Polytechnique Federale de Lausanne in 1989. The contents of these courses correspond to the material presented in Chapters 1 and 2 of this book. Chapter 3 deals with the anticipating stochastic calculus and it was de veloped from our collaboration with Moshe Zakai and Etienne Pardoux. The series of lectures given at the Eighth Chilean Winter School in Prob ability and Statistics, at Santiago de Chile, in July 1989, allowed us to write a pedagogical approach to the anticipating calculus which is the basis of Chapter 3. Chapter 4 deals with the nonlinear transformations of the Wiener measure and their applications to the study of the Markov property for solutions to stochastic differential equations with boundary conditions.

Book Malliavin Calculus with Applications to Stochastic Partial Differential Equations

Download or read book Malliavin Calculus with Applications to Stochastic Partial Differential Equations written by Marta Sanz-Sole and published by CRC Press. This book was released on 2005-08-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed in the 1970s to study the existence and smoothness of density for the probability laws of random vectors, Malliavin calculus--a stochastic calculus of variation on the Wiener space--has proven fruitful in many problems in probability theory, particularly in probabilistic numerical methods in financial mathematics. This book present

Book Stochastic Calculus of Variations in Mathematical Finance

Download or read book Stochastic Calculus of Variations in Mathematical Finance written by Paul Malliavin and published by Springer Science & Business Media. This book was released on 2006-02-25 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highly esteemed author Topics covered are relevant and timely

Book Malliavin Calculus in Finance

Download or read book Malliavin Calculus in Finance written by Elisa Alos and published by CRC Press. This book was released on 2021-07-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Malliavin Calculus in Finance: Theory and Practice aims to introduce the study of stochastic volatility (SV) models via Malliavin Calculus. Malliavin calculus has had a profound impact on stochastic analysis. Originally motivated by the study of the existence of smooth densities of certain random variables, it has proved to be a useful tool in many other problems. In particular, it has found applications in quantitative finance, as in the computation of hedging strategies or the efficient estimation of the Greeks. The objective of this book is to offer a bridge between theory and practice. It shows that Malliavin calculus is an easy-to-apply tool that allows us to recover, unify, and generalize several previous results in the literature on stochastic volatility modeling related to the vanilla, the forward, and the VIX implied volatility surfaces. It can be applied to local, stochastic, and also to rough volatilities (driven by a fractional Brownian motion) leading to simple and explicit results. Features Intermediate-advanced level text on quantitative finance, oriented to practitioners with a basic background in stochastic analysis, which could also be useful for researchers and students in quantitative finance Includes examples on concrete models such as the Heston, the SABR and rough volatilities, as well as several numerical experiments and the corresponding Python scripts Covers applications on vanillas, forward start options, and options on the VIX. The book also has a Github repository with the Python library corresponding to the numerical examples in the text. The library has been implemented so that the users can re-use the numerical code for building their examples. The repository can be accessed here: https://bit.ly/2KNex2Y.

Book Introduction to Malliavin Calculus

Download or read book Introduction to Malliavin Calculus written by David Nualart and published by Cambridge University Press. This book was released on 2018-09-27 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compact introduction to this active and powerful area of research, combining basic theory, core techniques, and recent applications.

Book Stochastic Analysis

    Book Details:
  • Author : Ichirō Shigekawa
  • Publisher : American Mathematical Soc.
  • Release : 2004
  • ISBN : 9780821826263
  • Pages : 202 pages

Download or read book Stochastic Analysis written by Ichirō Shigekawa and published by American Mathematical Soc.. This book was released on 2004 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise introduction to stochastic analysis, particularly the Malliavin calculus. A detailed description is given of all technical tools necessary to describe the theory, such as the Wiener process, the Ornstein-Uhlenbeck process, and Sobolev spaces. Applications of stochastic cal

Book Analysis of Variations for Self similar Processes

Download or read book Analysis of Variations for Self similar Processes written by Ciprian Tudor and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-similar processes are stochastic processes that are invariant in distribution under suitable time scaling, and are a subject intensively studied in the last few decades. This book presents the basic properties of these processes and focuses on the study of their variation using stochastic analysis. While self-similar processes, and especially fractional Brownian motion, have been discussed in several books, some new classes have recently emerged in the scientific literature. Some of them are extensions of fractional Brownian motion (bifractional Brownian motion, subtractional Brownian motion, Hermite processes), while others are solutions to the partial differential equations driven by fractional noises. In this monograph the author discusses the basic properties of these new classes of self-similar processes and their interrelationship. At the same time a new approach (based on stochastic calculus, especially Malliavin calculus) to studying the behavior of the variations of self-similar processes has been developed over the last decade. This work surveys these recent techniques and findings on limit theorems and Malliavin calculus.

Book Interest Rate Models  an Infinite Dimensional Stochastic Analysis Perspective

Download or read book Interest Rate Models an Infinite Dimensional Stochastic Analysis Perspective written by René Carmona and published by Springer Science & Business Media. This book was released on 2007-05-22 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the mathematical issues that arise in modeling the interest rate term structure by casting the interest-rate models as stochastic evolution equations in infinite dimensions. The text includes a crash course on interest rates, a self-contained introduction to infinite dimensional stochastic analysis, and recent results in interest rate theory. From the reviews: "A wonderful book. The authors present some cutting-edge math." --WWW.RISKBOOK.COM

Book The Malliavin Calculus

Download or read book The Malliavin Calculus written by Denis R. Bell and published by Courier Corporation. This book was released on 2012-12-03 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text presents detailed accounts of the different forms of the theory developed by Stroock and Bismut, discussions of the relationship between these two approaches, and a variety of applications. 1987 edition.

Book Stochastic Calculus of Variations

Download or read book Stochastic Calculus of Variations written by Yasushi Ishikawa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-03-07 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book "processes with jumps" includes both pure jump processes and jump-diffusions. The author provides many results on this topic in a self-contained way; this also applies to stochastic differential equations (SDEs) "with jumps". The book also contains some applications of the stochastic calculus for processes with jumps to the control theory and mathematical finance. Namely, asymptotic expansions functionals related with financial assets of jump-diffusion are provided based on the theory of asymptotic expansion on the Wiener–Poisson space. Solving the Hamilton–Jacobi–Bellman (HJB) equation of integro-differential type is related with solving the classical Merton problem and the Ramsey theory. The field of jump processes is nowadays quite wide-ranging, from the Lévy processes to SDEs with jumps. Recent developments in stochastic analysis have enabled us to express various results in a compact form. Up to now, these topics were rarely discussed in a monograph. Contents: Preface Preface to the second edition Introduction Lévy processes and Itô calculus Perturbations and properties of the probability law Analysis of Wiener–Poisson functionals Applications Appendix Bibliography List of symbols Index

Book L  vy Processes and Stochastic Calculus

Download or read book L vy Processes and Stochastic Calculus written by David Applebaum and published by Cambridge University Press. This book was released on 2009-04-30 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.