Download or read book Single Semiconductor Quantum Dots written by Peter Michler and published by Springer Science & Business Media. This book was released on 2009-06-13 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent advances in the field of semiconductor quantum dots via contributions from prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots.
Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2540 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Semiconductor Quantum Bits written by Fritz Henneberger and published by CRC Press. This book was released on 2016-04-19 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights state-of-the-art qubit implementations in semiconductors and provides an extensive overview of this newly emerging field. Semiconductor nanostructures have huge potential as future quantum information devices as they provide various ways of qubit implementation (electron spin, electronic excitation) as well as a way to transfer
Download or read book Comprehensive Semiconductor Science and Technology written by and published by Newnes. This book was released on 2011-01-28 with total page 3572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts
Download or read book Microcavities written by Alexey Kavokin and published by Oxford University Press. This book was released on 2011-04-28 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to cover a new and rapidly developing research field in physics. Confining light in small structures called microcavities produces new devices which exploit the quantum physics of light matter interactions.
Download or read book Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics written by Mohamed Henini and published by Elsevier. This book was released on 2011-07-28 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual
Download or read book Handbook of Nanophysics written by Klaus D. Sattler and published by CRC Press. This book was released on 2016-04-19 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and struct
Download or read book Optical Spectroscopy of Semiconductor Nanostructures written by Eougenious L. Ivchenko and published by Alpha Science Int'l Ltd.. This book was released on 2005 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume looks at optical spectroscopy of semiconductir nanostructures. Some of the topics it covers include: kingdom of nanostructures; quantum confinement in low-dimensional systems; resonant light reflection; and transmission and absorption.
Download or read book Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures written by Gabriela Slavcheva and published by Springer Science & Business Media. This book was released on 2010-06-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental concept of quantum coherence plays a central role in quantum physics, cutting across disciplines of quantum optics, atomic and condensed matter physics. Quantum coherence represents a universal property of the quantum s- tems that applies both to light and matter thereby tying together materials and p- nomena. Moreover, the optical coherence can be transferred to the medium through the light-matter interactions. Since the early days of quantum mechanics there has been a desire to control dynamics of quantum systems. The generation and c- trol of quantum coherence in matter by optical means, in particular, represents a viable way to achieve this longstanding goal and semiconductor nanostructures are the most promising candidates for controllable quantum systems. Optical generation and control of coherent light-matter states in semiconductor quantum nanostructures is precisely the scope of the present book. Recently, there has been a great deal of interest in the subject of quantum coh- ence. We are currently witnessing parallel growth of activities in different physical systems that are all built around the central concept of manipulation of quantum coherence. The burgeoning activities in solid-state systems, and semiconductors in particular, have been strongly driven by the unprecedented control of coherence that previously has been demonstrated in quantum optics of atoms and molecules, and is now taking advantage of the remarkable advances in semiconductor fabrication technologies. A recent impetus to exploit the coherent quantum phenomena comes from the emergence of the quantum information paradigm.
Download or read book Coherent Transient Nonlinear Optical Spectroscopic Studies of Single Semiconductor Quantum Dots written by Xiaoqin Li and published by . This book was released on 2003 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures written by Toshihide Takagahara and published by Academic Press. This book was released on 2003-02-10 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. - The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures
Download or read book Advances in Semiconductor Nanostructures written by Alexander V. Latyshev and published by Elsevier. This book was released on 2016-11-10 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications focuses on the physical aspects of semiconductor nanostructures, including growth and processing of semiconductor nanostructures by molecular-beam epitaxy, ion-beam implantation/synthesis, pulsed laser action on all types of III–V, IV, and II–VI semiconductors, nanofabrication by bottom-up and top-down approaches, real-time observations using in situ UHV-REM and high-resolution TEM of atomic structure of quantum well, nanowires, quantum dots, and heterostructures and their electrical, optical, magnetic, and spin phenomena. The very comprehensive nature of the book makes it an indispensable source of information for researchers, scientists, and post-graduate students in the field of semiconductor physics, condensed matter physics, and physics of nanostructures, helping them in their daily research. - Presents a comprehensive reference on the novel physical phenomena and properties of semiconductor nanostructures - Covers recent developments in the field from all over the world - Provides an International approach, as chapters are based on results obtained in collaboration with research groups from Russia, Germany, France, England, Japan, Holland, USA, Belgium, China, Israel, Brazil, and former Soviet Union countries
Download or read book Quantum Optics with Semiconductor Nanostructures written by Frank Jahnke and published by Elsevier. This book was released on 2012-07-16 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics.Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction in semiconductor nanostructures, including photon statistics and photoluminescence, is the focus of part three, whilst part four explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems. Finally, part five investigates ultrafast phenomena, including femtosecond quantum optics and coherent optoelectronics with quantum dots.With its distinguished editor and international team of expert contributors, Quantum optics with semiconductor nanostructures is an essential guide for all those involved with the research, development, manufacture and use of semiconductors nanodevices, lasers and optical components, as well as scientists, researchers and students. - A key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics - Chapters provide a comprehensive overview of single quantum dot systems, nanolasers with quantum dot emitters, and light-matter interaction in semiconductor nanostructures - Explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems, and investigates ultrafast phenomena
Download or read book Self Assembled Quantum Dots written by Zhiming M Wang and published by Springer Science & Business Media. This book was released on 2007-11-29 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.
Download or read book Spin Electronics written by David D. Awschalom and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.
Download or read book Microcavities written by Alexey V. Kavokin and published by Oxford University Press. This book was released on 2017-04-28 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microcavities are semiconductor, metal, or dielectric structures providing optical confinement in one, two or three dimensions. At the end of the 20th century, microcavities have attracted attention due to the discovery of a strong exciton-light coupling regime allowing for the formation of superposition light-matter quasiparticles: exciton-polaritons. In the following century several remarkable effects have been discovered in microcavities, including the Bose-Einstein condensation of exciton-polaritons, polariton lasing, superfluidity, optical spin Hall and spin Meissner effects, amongst other discoveries. Currently, polariton devices exploiting the bosonic stimulation effects at room temperature are being developed by laboratories across the world. This book addresses the physics of microcavities: from classical to quantum optics, from a Boltzmann gas to a superfluid. It provides the theoretical background needed for understanding the complex phenomena in coupled light-matter systems, and it presents a broad overview of experimental progress in the physics of microcavities.
Download or read book Polaritonic Chemistry written by Javier Galego Pascual and published by Springer Nature. This book was released on 2020-06-25 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polaritonic chemistry is an emergent interdisciplinary field in which the strong interaction of organic molecules with confined electromagnetic field modes is exploited in order to manipulate the chemical structure and reactions of the system. In the regime of strong light-matter coupling the interaction with the electromagnetic vacuum obliges us to redefine the concept of a molecule and consider the hybrid system as a whole. This thesis builds on the foundations of chemistry and quantum electrodynamics in order to provide a theoretical framework to describe these organic light-matter hybrids. By fully embracing the structural complexity of molecules, this theory allows us to employ long-established quantum chemistry methods to understand polaritonic chemistry. This leads to predictions of substantial structural changes in organic molecules and the possibility of significantly influencing chemical reactions both in the excited and ground states of the system.