Download or read book Magnetic Resonance Imaging written by Robert W. Brown and published by John Wiley & Sons. This book was released on 2014-06-23 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
Download or read book Magnetic Resonance Imaging written by Stewart C. Bushong and published by Elsevier Health Sciences. This book was released on 2003-01-01 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dette er en grundlæggende lærebog om konventionel MRI samt billedteknik. Den begynder med et overblik over elektricitet og magnetisme, herefter gives en dybtgående forklaring på hvordan MRI fungerer og her diskuteres de seneste metoder i radiografisk billedtagning, patientsikkerhed m.v.
Download or read book Magnetic Resonance Imaging written by Marinus T. Vlaardingerbroek and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive survey of the analytical treatment of MRI physics and engineering brings the reader to a position to cope with the problems that arise when applying MRI to medical problems or when (sub)systems or sequences for new applications are designed.
Download or read book Quantitative Magnetic Resonance Imaging written by Nicole Seiberlich and published by Academic Press. This book was released on 2020-11-18 with total page 1094 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Download or read book Understanding Magnetic Resonance Imaging written by Robert C. Smith and published by CRC Press. This book was released on 1997-11-20 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic resonance imaging (MRI) is the most technically dependent imaging technique in radiology. To perform and interpret MRI studies correctly, an understanding of the basic underlying principles is essential. Understanding Magnetic Resonance Imaging explains the pulse sequences, imaging options, and coils used to produce MR images, providing a strong foundation for performing and interpreting imaging studies. The text is complemented by more than 100 figures and 25 photomicrographs illustrating the techniques discussed. Radiology residents, MR technologists, and radiologists should not be without Understanding Magnetic Resonance Imaging-the only single resource that explains all technical aspects of MRI, including recent advances, and presents all imaging options.
Download or read book Principles of Magnetic Resonance Imaging written by Zhi-Pei Liang and published by Wiley-IEEE Press. This book was released on 2000 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.
Download or read book Contrast Enhanced Clinical Magnetic Resonance Imaging written by Val M. Runge and published by University Press of Kentucky. This book was released on 1997 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Functional Magnetic Resonance Imaging written by Richard B. Buxton and published by Cambridge University Press. This book was released on 2009-08-27 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
Download or read book Lippincott s Magnetic Resonance Imaging Review written by Gregory L. Wheeler and published by Lippincott Williams & Wilkins. This book was released on 1996-01-01 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here's the perfect review tool for radiologic technologists taking the ARRT's Advanced Qualifications Examination in Magnetic Resonance Imaging. It's packed with over 700 questions and answers covering all aspects of MRI. Detailed explanations of answers and references for further study help reinforce problem areas.
Download or read book Medical Imaging Systems written by Andreas Maier and published by Springer. This book was released on 2018-08-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Download or read book Magnetic Resonance Imaging written by Vadim Kuperman and published by Elsevier. This book was released on 2000-03-15 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a text/reference for students, researchers, and professors interested in physical and biomedical applications of Magnetic Resonance Imaging (MRI). Both the theoretical and practical aspects of MRI are emphasized. The book begins with a comprehensive discussion of the Nuclear Magnetic Resonance (NMR) phenomenon based on quantum mechanics and the classical theory of electromagnetism. The first three chapters of this book provide the foundation needed to understand the basic characteristics of MR images, e.g.,image contrast, spatial resolution, signal-to-noise ratio, common image artifacts. Then MRI applications are considered in the following five chapters. Both the theoretical and practical aspects of MRI are emphasized. The book ends with a discussion of instrumentation and the principles of signal detection in MRI. - Clear progression from fundamental physical principles of NMR to MRI and its applications - Extensive discussion of image acquisition and reconstruction of MRI - Discussion of different mechanisms of MR image contrast - Mathematical derivation of the signal-to-noise dependence on basic MR imaging parameters as well as field strength - In-depth consideration of artifacts in MR images - Comprehensive discussion of several techniques used for rapid MR imaging including rapid gradient-echo imaging, echo-planar imaging, fast spin-echo imaging and spiral imaging - Qualitative discussion combined with mathematical description of MR techniques for imaging flow
Download or read book Magnetic Resonance Imaging of the Brain and Spine written by Scott W. Atlas and published by Lippincott Williams & Wilkins. This book was released on 2009 with total page 1976 pages. Available in PDF, EPUB and Kindle. Book excerpt: Established as the leading textbook on imaging diagnosis of brain and spine disorders, Magnetic Resonance Imaging of the Brain and Spine is now in its Fourth Edition. This thoroughly updated two-volume reference delivers cutting-edge information on nearly every aspect of clinical neuroradiology. Expert neuroradiologists, innovative renowned MRI physicists, and experienced leading clinical neurospecialists from all over the world show how to generate state-of-the-art images and define diagnoses from crucial clinical/pathologic MR imaging correlations for neurologic, neurosurgical, and psychiatric diseases spanning fetal CNS anomalies to disorders of the aging brain. Highlights of this edition include over 6,800 images of remarkable quality, more color images, and new information using advanced techniques, including perfusion and diffusion MRI and functional MRI. A companion Website will offer the fully searchable text and an image bank.
Download or read book X Nuclei Magnetic Resonance Imaging written by Guillaume Madelin and published by CRC Press. This book was released on 2022-03-15 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Standard magnetic resonance imaging (MRI) is a prominent clinical imaging modality used to diagnose and study diseases in vivo. It is principally based on the detection of the nuclei of hydrogen atoms (the proton; symbol 1H) in water molecules in tissues. X-nuclei MRI (also called non-proton MRI) is based on the detection of the nuclei of other atoms (X-nuclei) in the body, such as sodium (23Na), phosphorus (31P), chlorine (35Cl), potassium (39K), deuterium (2H), oxygen (17O), lithium (7Li), and fluorine (19F) using modified software and hardware. X-nuclei MRI can provide fundamental, new metabolic information related to cellular energetic metabolism and ion homeostasis in tissues that cannot be assessed using standard hydrogen MRI. This book is an introduction to the techniques and biomedical applications of X-nuclei MRI. It describes the theoretical and experimental basis of X-nuclei MRI, the limitations of this technique, and its potential biomedical applications for the diagnosis and prognosis of many disorders or for quantitative monitoring of therapies in a wide range of diseases. The book is divided into four parts. Part I includes a general description of X-nuclei nuclear magnetic resonance physics and imaging. Part II deals with the MRI of endogenous nuclei such as 23Na, 31P, 35Cl, and 39K; Part III, the MRI of endogenous/exogenous nuclei such as 2H and 17O; and Part IV, the MRI of exogenous nuclei such as 7Li and 19F. The book is illustrated throughout with many representative figures and includes references and reading suggestions in each section. It is the first book to introduce X-nuclei MRI to researchers, clinicians, students, and general readers who are interested in the development of imaging methods for assessing new metabolic information in tissues in vivo in order to diagnose diseases, improve prognosis, or measure the efficiency of therapies in a timely and quantitative manner. It is an ideal starting point for a clinical or scientific research project in non-proton MRI techniques.
Download or read book Magnetic Resonance Imaging written by Walter Johannes Schempp and published by Wiley-Liss. This book was released on 1998-09-30 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: MAGNETIC RESONANCE IMAGING Mathematical Foundations and Applications By Walter J. Schempp As magnetic resonance imaging (MRI) continues to transform medical diagnostics and the study of the brain, the necessity for a more precise description of this important clinical tool is increasingly evident. A mathematical understanding of MRI and the related imaging modalities of functional MRI and NMR spectroscopy can greatly improve many scientific and medical endeavors, from the quality of scans in the tomographic slices and their semantic interpretations to minimally invasive neurosurgery and research in cognitive neuroscience. Magnetic Resonance Imaging advances a coherent mathematical theory of MRI and presents for the first time a real-world application of non-commutative Fourier analysis. Emphasizing the interdisciplinary nature of clinical MRI, this book offers an intriguing look at the geometric principles underlying the quantum phenomena of biomedical research. Author Walter J. Schempp, widely respected among mathematicians and neuro-network scientists alike, includes in this lucid, readable text: * The historical and phenomenological aspects of NMR spectroscopy and clinical MRI * A mathematical approach to the structure-function problem in clinical MRI * Detailed descriptions of applications to medical diagnostics * Photographs illustrating the superior contrast and spatial resolution achieved by MRI * An extensive list of references. Magnetic Resonance Imaging introduces clinical and mathematical concepts gradually and deliberately, making the complex procedure of MRI accessible to professionals in all areas of neuroscience and neurology, as well as those in mathematics, engineering, radiology, and physics.
Download or read book Electromagnetics in Magnetic Resonance Imaging written by Christopher M. Collins and published by Morgan & Claypool Publishers. This book was released on 2016-03-01 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.
Download or read book Technical Magnetic Resonance Imaging written by John A. Markisz and published by McGraw Hill Professional. This book was released on 1996 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise book explains the basic principles of magnetic resonance imaging.
Download or read book Magnetic Resonance Brain Imaging written by Jörg Polzehl and published by Springer Nature. This book was released on 2019-09-25 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the modeling and analysis of magnetic resonance imaging (MRI) data acquired from the human brain. The data processing pipelines described rely on R. The book is intended for readers from two communities: Statisticians who are interested in neuroimaging and looking for an introduction to the acquired data and typical scientific problems in the field; and neuroimaging students wanting to learn about the statistical modeling and analysis of MRI data. Offering a practical introduction to the field, the book focuses on those problems in data analysis for which implementations within R are available. It also includes fully worked examples and as such serves as a tutorial on MRI analysis with R, from which the readers can derive their own data processing scripts. The book starts with a short introduction to MRI and then examines the process of reading and writing common neuroimaging data formats to and from the R session. The main chapters cover three common MR imaging modalities and their data modeling and analysis problems: functional MRI, diffusion MRI, and Multi-Parameter Mapping. The book concludes with extended appendices providing details of the non-parametric statistics used and the resources for R and MRI data.The book also addresses the issues of reproducibility and topics like data organization and description, as well as open data and open science. It relies solely on a dynamic report generation with knitr and uses neuroimaging data publicly available in data repositories. The PDF was created executing the R code in the chunks and then running LaTeX, which means that almost all figures, numbers, and results were generated while producing the PDF from the sources.