EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Magnetic Control of Tokamak Plasmas

Download or read book Magnetic Control of Tokamak Plasmas written by Marco Ariola and published by Springer. This book was released on 2016-02-23 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a complete treatment of work done to resolve the problems of position-, current-, and shape-control of plasma in tokamak-type (toroidal) devices being studied as a potential means of commercial energy production by nuclear fusion. Modelling and control are both detailed, allowing non-expert readers to understand the control problem. Starting from the magneto-hydro-dynamic equations, all the steps needed for the derivation of plasma state-space models are enumerated with frequent recall of the basic concepts of electromagnetics. The control problem is then described, beginning with the control of current and position—vertical and radial—control and progressing to the more challenging shape control. The solutions proposed vary from simple PIDs to more sophisticated MIMO controllers. The second edition of Magnetic Control of Tokamak Plasmas contains numerous updates and a substantial amount of completely new material covering areas such as: • modelling and control of resistive wall modes—the most important non-axisimmetric mode; • the isoflux approach for shape control; • a general approach for the control of limiter plasmas; • the use of inner vessel coils for vertical stabilization; and • significantly enhanced treatment of plasma-shape control at JET, including experimental results and introducing a method implemented for operation in the presence of current saturations. Whenever possible, coverage of the various topics is rounded out with experimental results obtained on currently existing tokamaks. The book also includes a presentation of the typical actuators and sensors used for control purposes in tokamaks. Some mathematical details are given in the appendices for the interested reader. The ideas formulated in this monograph will be of great practical help to control engineers, academic researchers and graduate students working directly with problems related to the control of nuclear fusion. They will also stimulate control researchers interested more generally in the advanced applications of the discipline. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Book Magnetic Control of Tokamak Plasmas

Download or read book Magnetic Control of Tokamak Plasmas written by Marco Ariola and published by Springer Science & Business Media. This book was released on 2008-07-05 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: this part is supported by two useful appendices on some of the mathematical tools used and the physical units of plasma physics. State-space models, state observers, H control, and process simulations are some of the familiar techniques used by ? the authors to meet the demanding spatial control specifications for these processes; however, the research reported in the monograph is more that just simulation studies and proposals for possible future hypothetical controllers, for the authors have worked with some of the world’s leading existing tokamak facilities. Chapter 5, 8, and 9 respectively, give practical results of implementations of their control schemes on the FTU Tokamak (Italy), the TCV Tokamak (Switzerland), and the JET Tokamak (United Kingdom). Additionally, the authors present simulation results of their ideas for the control of the new tokamak proposed for the ITER project. In conclusion, being very aware that most control engineers will not be conversant with the complexities of tokamak nuclear fusion reactor control, the authors have taken special care to give a useful introduction to the background of nuclear fusion, the science of plasma physics and appropriate models in the first part of the monograph (Chapters 1 to 3). This introduction is followed by six chapters (4 to 9) of control studies. In Chapter 4, the generic control problem is established and then five case study chapters follow.

Book Theory of Tokamak Plasmas

Download or read book Theory of Tokamak Plasmas written by R.B. White and published by Elsevier. This book was released on 2017-01-31 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate textbook on tokamak physics, designed to provide a basic introduction to plasma equilibrium, particle orbits, transport, and those ideal and resistive magnetohydrodynamic instabilities which dominate the behavior of a tokamak discharge, and to develop the mathematical methods necessary for their theoretical analysis.

Book Plasma Physics and Fusion Energy

Download or read book Plasma Physics and Fusion Energy written by Jeffrey P. Freidberg and published by Cambridge University Press. This book was released on 2008-07-10 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been an increase in interest worldwide in fusion research over the last decade and a half due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever increasing demand for electrical energy. Based on a series of course notes from graduate courses in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.

Book Magnetic Fusion Technology

Download or read book Magnetic Fusion Technology written by Thomas J. Dolan and published by Springer Science & Business Media. This book was released on 2014-02-10 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Book Controlled Fusion and Plasma Physics

Download or read book Controlled Fusion and Plasma Physics written by Kenro Miyamoto and published by Taylor & Francis. This book was released on 2006-10-23 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activ

Book Introduction to Plasma Physics and Controlled Fusion

Download or read book Introduction to Plasma Physics and Controlled Fusion written by Francis F. Chen and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.

Book Control of Asymmetric Magnetic Perturbations in Tokamaks

Download or read book Control of Asymmetric Magnetic Perturbations in Tokamaks written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field.

Book Active Control of Magneto hydrodynamic Instabilities in Hot Plasmas

Download or read book Active Control of Magneto hydrodynamic Instabilities in Hot Plasmas written by Valentin Igochine and published by Springer. This book was released on 2014-09-15 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity. However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.

Book Plasma Science

    Book Details:
  • Author : National Academies of Sciences Engineering and Medicine
  • Publisher :
  • Release : 2021-02-28
  • ISBN : 9780309677608
  • Pages : 291 pages

Download or read book Plasma Science written by National Academies of Sciences Engineering and Medicine and published by . This book was released on 2021-02-28 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.

Book Magnetohydrodynamic Stability of Tokamaks

Download or read book Magnetohydrodynamic Stability of Tokamaks written by Hartmut Zohm and published by John Wiley & Sons. This book was released on 2015-02-09 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book bridges the gap between general plasma physics lectures and the real world problems in MHD stability. In order to support the understanding of concepts and their implication, it refers to real world problems such as toroidal mode coupling or nonlinear evolution in a conceptual and phenomenological approach. Detailed mathematical treatment will involve classical linear stability analysis and an outline of more recent concepts such as the ballooning formalism. The book is based on lectures that the author has given to Master and PhD students in Fusion Plasma Physics. Due its strong link to experimental results in MHD instabilities, the book is also of use to senior researchers in the field, i.e. experimental physicists and engineers in fusion reactor science. The volume is organized in three parts. It starts with an introduction to the MHD equations, a section on toroidal equilibrium (tokamak and stellarator), and on linear stability analysis. Starting from there, the ideal MHD stability of the tokamak configuration will be treated in the second part which is subdivided into current driven and pressure driven MHD. This includes many examples with reference to experimental results for important MHD instabilities such as kinks and their transformation to RWMs, infernal modes, peeling modes, ballooning modes and their relation to ELMs. Finally the coverage is completed by a chapter on resistive stability explaining reconnection and island formation. Again, examples from recent tokamak MHD such as sawteeth, CTMs, NTMs and their relation to disruptions are extensively discussed.

Book Computational Methods in Plasma Physics

Download or read book Computational Methods in Plasma Physics written by Stephen Jardin and published by CRC Press. This book was released on 2010-06-02 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts neces

Book Edge Localized Mode Control by Resonant Magnetic Perturbations in Tokamak Plasmas

Download or read book Edge Localized Mode Control by Resonant Magnetic Perturbations in Tokamak Plasmas written by Francois Orain and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The growth of plasma instabilities called Edge Localized Modes (ELMs) in tokamaks results in the quasi-periodic relaxations of the edge plasma, potentially harmful for the divertor in ITER. One of the promising ELM control methods planned in ITER is the application of external resonant magnetic perturbations (RMPs), already efficient for ELM mitigation/suppression in current tokamak experiments. However a better understanding of the interaction between ELMs, RMPs and plasma flows is needed to make reliable predictions for ITER. In this perspective, non-linear modeling of ELMs and RMPs is done with the reduced MHD code JOREK, in realisitic geometry including the X-point and the Scrape-Off Layer. The two-fluid diamagnetic drifts, the neoclassical friction, a source of parallel rotation and RMPs have been implemented to simulate the RMP penetration consistently with the plasma response. As a first step, the plasma response to RMPs (without ELMs) is studied for JET, MAST and ITER realistic plasma parameters and geometry. Then the cyclic dynamics of the ELMs (without RMPs) is modeled for the first time in realistic geometry. After an ELM crash, the diamagnetic rotation is found to be instrumental to stabilize the plasma and to model the cyclic reconstruction and collapse of the plasma pressure profile. Last the ELM mitigation and suppression by RMPs is observed for the first time in modeling. The non-linear coupling of the RMPs with unstable modes is found to induce a continuous MHD activity in place of a large ELM crash, resulting in the mitigation of the ELMs. Over a threshold in magnetic perturbation, the full ELM suppression is also observed.

Book Energetic Particles in Tokamak Plasmas

Download or read book Energetic Particles in Tokamak Plasmas written by Sergei Sharapov and published by CRC Press. This book was released on 2021-04-02 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of energetic particles in magnetic fusion plasmas is key to the development of next-generation "burning" plasma fusion experiments, such as the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Power Station (DEMO). This book provides a comprehensive introduction and analysis of the experimental data on how fast ions behave in fusion-grade plasmas, featuring the latest ground-breaking results from world-leading machines such as the Joint European Torus (JET) and the Mega Ampere Spherical Tokamak (MAST). It also details Alfvenic instabilities, driven by energetic ions, which can cause enhanced transport of energetic ions. MHD spectroscopy of plasma via observed Alfvenic waves called "Alfvén spectroscopy" is introduced and several applications are presented. This book will be of interest to graduate students, researchers, and academics studying fusion plasma physics. Features: Provides a comprehensive overview of the field in one cohesive text, with the main physics phenomena explained qualitatively first. Authored by an authority in the field, who draws on his extensive experience of working with energetic particles in tokamak plasmas. Is suitable for extrapolating energetic particle phenomena in fusion to other plasma types, such as solar and space plasmas.

Book Safety Factor Profile Control in a Tokamak

Download or read book Safety Factor Profile Control in a Tokamak written by Federico Bribiesca Argomedo and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium. Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs). The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The text then tackles the construction of an input-to-state-stability Lyapunov function for the infinite-dimensional system that handles the medium anisotropy and provides a common basis for analytical robustness results. This function is used as a control-Lyapunov function and allows the amplitude and nonlinear shape constraints in the control action to be dealt with. Finally, the Brief addresses important application- and implementation-specific concerns. In particular, the coupling of the PDE and the finite-dimensional subsystem representing the evolution of the boundary condition (magnetic coils) and the introduction of profile-reconstruction delays in the control loop (induced by solving a 2-D inverse problem for computing the magnetic flux) is analyzed. Simulation results are presented for various operation scenarios on Tore Supra (simulated with METIS) and on TCV (simulated with RAPTOR). Control of the Safety Factor Profile in a Tokamak will be of interest to both academic and industrially-based researchers interested in nuclear energy and plasma-containment control systems, and graduate students in nuclear and control engineering.

Book Artificial Intelligence for Science  AI4S

Download or read book Artificial Intelligence for Science AI4S written by Qinghai Miao and published by Springer Nature. This book was released on with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Final Report of the Committee on a Strategic Plan for U S  Burning Plasma Research

Download or read book Final Report of the Committee on a Strategic Plan for U S Burning Plasma Research written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-07-01 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.