EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Discovery in Physics

    Book Details:
  • Author : Katharina Morik
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2022-12-31
  • ISBN : 311078596X
  • Pages : 364 pages

Download or read book Discovery in Physics written by Katharina Morik and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-12-31 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is part of Artificial Intelligence since its beginning. Certainly, not learning would only allow the perfect being to show intelligent behavior. All others, be it humans or machines, need to learn in order to enhance their capabilities. In the eighties of the last century, learning from examples and modeling human learning strategies have been investigated in concert. The formal statistical basis of many learning methods has been put forward later on and is still an integral part of machine learning. Neural networks have always been in the toolbox of methods. Integrating all the pre-processing, exploitation of kernel functions, and transformation steps of a machine learning process into the architecture of a deep neural network increased the performance of this model type considerably. Modern machine learning is challenged on the one hand by the amount of data and on the other hand by the demand of real-time inference. This leads to an interest in computing architectures and modern processors. For a long time, the machine learning research could take the von-Neumann architecture for granted. All algorithms were designed for the classical CPU. Issues of implementation on a particular architecture have been ignored. This is no longer possible. The time for independently investigating machine learning and computational architecture is over. Computing architecture has experienced a similarly rampant development from mainframe or personal computers in the last century to now very large compute clusters on the one hand and ubiquitous computing of embedded systems in the Internet of Things on the other hand. Cyber-physical systems’ sensors produce a huge amount of streaming data which need to be stored and analyzed. Their actuators need to react in real-time. This clearly establishes a close connection with machine learning. Cyber-physical systems and systems in the Internet of Things consist of diverse components, heterogeneous both in hard- and software. Modern multi-core systems, graphic processors, memory technologies and hardware-software codesign offer opportunities for better implementations of machine learning models. Machine learning and embedded systems together now form a field of research which tackles leading edge problems in machine learning, algorithm engineering, and embedded systems. Machine learning today needs to make the resource demands of learning and inference meet the resource constraints of used computer architecture and platforms. A large variety of algorithms for the same learning method and, moreover, diverse implementations of an algorithm for particular computing architectures optimize learning with respect to resource efficiency while keeping some guarantees of accuracy. The trade-off between a decreased energy consumption and an increased error rate, to just give an example, needs to be theoretically shown for training a model and the model inference. Pruning and quantization are ways of reducing the resource requirements by either compressing or approximating the model. In addition to memory and energy consumption, timeliness is an important issue, since many embedded systems are integrated into large products that interact with the physical world. If the results are delivered too late, they may have become useless. As a result, real-time guarantees are needed for such systems. To efficiently utilize the available resources, e.g., processing power, memory, and accelerators, with respect to response time, energy consumption, and power dissipation, different scheduling algorithms and resource management strategies need to be developed. This book series addresses machine learning under resource constraints as well as the application of the described methods in various domains of science and engineering. Turning big data into smart data requires many steps of data analysis: methods for extracting and selecting features, filtering and cleaning the data, joining heterogeneous sources, aggregating the data, and learning predictions need to scale up. The algorithms are challenged on the one hand by high-throughput data, gigantic data sets like in astrophysics, on the other hand by high dimensions like in genetic data. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are applied to program executions in order to save resources. The three books will have the following subtopics: Volume 1: Machine Learning under Resource Constraints - Fundamentals Volume 2: Machine Learning and Physics under Resource Constraints - Discovery Volume 3: Machine Learning under Resource Constraints - Applications Volume 2 is about machine learning for knowledge discovery in particle and astroparticle physics. Their instruments, e.g., particle accelerators or telescopes, gather petabytes of data. Here, machine learning is necessary not only to process the vast amounts of data and to detect the relevant examples efficiently, but also as part of the knowledge discovery process itself. The physical knowledge is encoded in simulations that are used to train the machine learning models. At the same time, the interpretation of the learned models serves to expand the physical knowledge. This results in a cycle of theory enhancement supported by machine learning.

Book Fundamentals

    Book Details:
  • Author : Katharina Morik
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2022-12-31
  • ISBN : 3110785943
  • Pages : 506 pages

Download or read book Fundamentals written by Katharina Morik and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-12-31 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is part of Artificial Intelligence since its beginning. Certainly, not learning would only allow the perfect being to show intelligent behavior. All others, be it humans or machines, need to learn in order to enhance their capabilities. In the eighties of the last century, learning from examples and modeling human learning strategies have been investigated in concert. The formal statistical basis of many learning methods has been put forward later on and is still an integral part of machine learning. Neural networks have always been in the toolbox of methods. Integrating all the pre-processing, exploitation of kernel functions, and transformation steps of a machine learning process into the architecture of a deep neural network increased the performance of this model type considerably. Modern machine learning is challenged on the one hand by the amount of data and on the other hand by the demand of real-time inference. This leads to an interest in computing architectures and modern processors. For a long time, the machine learning research could take the von-Neumann architecture for granted. All algorithms were designed for the classical CPU. Issues of implementation on a particular architecture have been ignored. This is no longer possible. The time for independently investigating machine learning and computational architecture is over. Computing architecture has experienced a similarly rampant development from mainframe or personal computers in the last century to now very large compute clusters on the one hand and ubiquitous computing of embedded systems in the Internet of Things on the other hand. Cyber-physical systems’ sensors produce a huge amount of streaming data which need to be stored and analyzed. Their actuators need to react in real-time. This clearly establishes a close connection with machine learning. Cyber-physical systems and systems in the Internet of Things consist of diverse components, heterogeneous both in hard- and software. Modern multi-core systems, graphic processors, memory technologies and hardware-software codesign offer opportunities for better implementations of machine learning models. Machine learning and embedded systems together now form a field of research which tackles leading edge problems in machine learning, algorithm engineering, and embedded systems. Machine learning today needs to make the resource demands of learning and inference meet the resource constraints of used computer architecture and platforms. A large variety of algorithms for the same learning method and, moreover, diverse implementations of an algorithm for particular computing architectures optimize learning with respect to resource efficiency while keeping some guarantees of accuracy. The trade-off between a decreased energy consumption and an increased error rate, to just give an example, needs to be theoretically shown for training a model and the model inference. Pruning and quantization are ways of reducing the resource requirements by either compressing or approximating the model. In addition to memory and energy consumption, timeliness is an important issue, since many embedded systems are integrated into large products that interact with the physical world. If the results are delivered too late, they may have become useless. As a result, real-time guarantees are needed for such systems. To efficiently utilize the available resources, e.g., processing power, memory, and accelerators, with respect to response time, energy consumption, and power dissipation, different scheduling algorithms and resource management strategies need to be developed. This book series addresses machine learning under resource constraints as well as the application of the described methods in various domains of science and engineering. Turning big data into smart data requires many steps of data analysis: methods for extracting and selecting features, filtering and cleaning the data, joining heterogeneous sources, aggregating the data, and learning predictions need to scale up. The algorithms are challenged on the one hand by high-throughput data, gigantic data sets like in astrophysics, on the other hand by high dimensions like in genetic data. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are applied to program executions in order to save resources. The three books will have the following subtopics: Volume 1: Machine Learning under Resource Constraints - Fundamentals Volume 2: Machine Learning and Physics under Resource Constraints - Discovery Volume 3: Machine Learning under Resource Constraints - Applications Volume 1 establishes the foundations of this new field (Machine Learning under Resource Constraints). It goes through all the steps from data collection, their summary and clustering, to the different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Several machine learning methods are inspected with respect to their resource requirements and how to enhance their scalability on diverse computing architectures ranging from embedded systems to large computing clusters.

Book Applications

    Book Details:
  • Author : Katharina Morik
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2022-12-31
  • ISBN : 3110785986
  • Pages : 478 pages

Download or read book Applications written by Katharina Morik and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-12-31 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is part of Artificial Intelligence since its beginning. Certainly, not learning would only allow the perfect being to show intelligent behavior. All others, be it humans or machines, need to learn in order to enhance their capabilities. In the eighties of the last century, learning from examples and modeling human learning strategies have been investigated in concert. The formal statistical basis of many learning methods has been put forward later on and is still an integral part of machine learning. Neural networks have always been in the toolbox of methods. Integrating all the pre-processing, exploitation of kernel functions, and transformation steps of a machine learning process into the architecture of a deep neural network increased the performance of this model type considerably. Modern machine learning is challenged on the one hand by the amount of data and on the other hand by the demand of real-time inference. This leads to an interest in computing architectures and modern processors. For a long time, the machine learning research could take the von-Neumann architecture for granted. All algorithms were designed for the classical CPU. Issues of implementation on a particular architecture have been ignored. This is no longer possible. The time for independently investigating machine learning and computational architecture is over. Computing architecture has experienced a similarly rampant development from mainframe or personal computers in the last century to now very large compute clusters on the one hand and ubiquitous computing of embedded systems in the Internet of Things on the other hand. Cyber-physical systems’ sensors produce a huge amount of streaming data which need to be stored and analyzed. Their actuators need to react in real-time. This clearly establishes a close connection with machine learning. Cyber-physical systems and systems in the Internet of Things consist of diverse components, heterogeneous both in hard- and software. Modern multi-core systems, graphic processors, memory technologies and hardware-software codesign offer opportunities for better implementations of machine learning models. Machine learning and embedded systems together now form a field of research which tackles leading edge problems in machine learning, algorithm engineering, and embedded systems. Machine learning today needs to make the resource demands of learning and inference meet the resource constraints of used computer architecture and platforms. A large variety of algorithms for the same learning method and, moreover, diverse implementations of an algorithm for particular computing architectures optimize learning with respect to resource efficiency while keeping some guarantees of accuracy. The trade-off between a decreased energy consumption and an increased error rate, to just give an example, needs to be theoretically shown for training a model and the model inference. Pruning and quantization are ways of reducing the resource requirements by either compressing or approximating the model. In addition to memory and energy consumption, timeliness is an important issue, since many embedded systems are integrated into large products that interact with the physical world. If the results are delivered too late, they may have become useless. As a result, real-time guarantees are needed for such systems. To efficiently utilize the available resources, e.g., processing power, memory, and accelerators, with respect to response time, energy consumption, and power dissipation, different scheduling algorithms and resource management strategies need to be developed. This book series addresses machine learning under resource constraints as well as the application of the described methods in various domains of science and engineering. Turning big data into smart data requires many steps of data analysis: methods for extracting and selecting features, filtering and cleaning the data, joining heterogeneous sources, aggregating the data, and learning predictions need to scale up. The algorithms are challenged on the one hand by high-throughput data, gigantic data sets like in astrophysics, on the other hand by high dimensions like in genetic data. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are applied to program executions in order to save resources. The three books will have the following subtopics: Volume 1: Machine Learning under Resource Constraints - Fundamentals Volume 2: Machine Learning and Physics under Resource Constraints - Discovery Volume 3: Machine Learning under Resource Constraints - Applications Volume 3 describes how the resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples. In the areas of health and medicine, it is demonstrated how machine learning can improve risk modelling, diagnosis, and treatment selection for diseases. Machine learning supported quality control during the manufacturing process in a factory allows to reduce material and energy cost and save testing times is shown by the diverse real-time applications in electronics and steel production as well as milling. Additional application examples show, how machine-learning can make traffic, logistics and smart cities more efficient and sustainable. Finally, mobile communications can benefit substantially from machine learning, for example by uncovering hidden characteristics of the wireless channel.

Book Machine Learning and Knowledge Discovery in Databases

Download or read book Machine Learning and Knowledge Discovery in Databases written by Massih-Reza Amini and published by Springer Nature. This book was released on 2023-03-16 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022. The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; . Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.

Book Investigating Explanation Based Learning

Download or read book Investigating Explanation Based Learning written by Gerald DeJong and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explanation-Based Learning (EBL) can generally be viewed as substituting background knowledge for the large training set of exemplars needed by conventional or empirical machine learning systems. The background knowledge is used automatically to construct an explanation of a few training exemplars. The learned concept is generalized directly from this explanation. The first EBL systems of the modern era were Mitchell's LEX2, Silver's LP, and De Jong's KIDNAP natural language system. Two of these systems, Mitchell's and De Jong's, have led to extensive follow-up research in EBL. This book outlines the significant steps in EBL research of the Illinois group under De Jong. This volume describes theoretical research and computer systems that use a broad range of formalisms: schemas, production systems, qualitative reasoning models, non-monotonic logic, situation calculus, and some home-grown ad hoc representations. This has been done consciously to avoid sacrificing the ultimate research significance in favor of the expediency of any particular formalism. The ultimate goal, of course, is to adopt (or devise) the right formalism.

Book Machine Learning Meets Quantum Physics

Download or read book Machine Learning Meets Quantum Physics written by Kristof T. Schütt and published by Springer Nature. This book was released on 2020-06-03 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.

Book Machine Learning Techniques for Space Weather

Download or read book Machine Learning Techniques for Space Weather written by Enrico Camporeale and published by Elsevier. This book was released on 2018-05-31 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms

Book The Perceptron

Download or read book The Perceptron written by Frank Rosenblatt and published by . This book was released on 1958 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook On Big Data And Machine Learning In The Physical Sciences  In 2 Volumes

Download or read book Handbook On Big Data And Machine Learning In The Physical Sciences In 2 Volumes written by and published by World Scientific. This book was released on 2020-03-10 with total page 1001 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.

Book Deep Learning and Physics

Download or read book Deep Learning and Physics written by Akinori Tanaka and published by Springer Nature. This book was released on 2021-03-24 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.

Book Machine Learning

    Book Details:
  • Author : Marco Gori
  • Publisher : Morgan Kaufmann
  • Release : 2017-11-13
  • ISBN : 9780081006597
  • Pages : 0 pages

Download or read book Machine Learning written by Marco Gori and published by Morgan Kaufmann. This book was released on 2017-11-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines. The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based approach followed in this book. This book presents a simpler unified notion of regularization, which is strictly connected with the parsimony principle, and includes many solved exercises that are classified according to the Donald Knuth ranking of difficulty, which essentially consists of a mix of warm-up exercises that lead to deeper research problems. A software simulator is also included.

Book Materials Discovery and Design

Download or read book Materials Discovery and Design written by Turab Lookman and published by Springer. This book was released on 2018-09-22 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.

Book Data Science and Machine Learning

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Book Real Time Streaming with Apache Kafka  Spark  and Storm

Download or read book Real Time Streaming with Apache Kafka Spark and Storm written by Brindha Priyadarshini Jeyaraman and published by BPB Publications. This book was released on 2021-08-20 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build a platform using Apache Kafka, Spark, and Storm to generate real-time data insights and view them through Dashboards. KEY FEATURES ● Extensive practical demonstration of Apache Kafka concepts, including producer and consumer examples. ● Includes graphical examples and explanations of implementing Kafka Producer and Kafka Consumer commands and methods. ● Covers integration and implementation of Spark-Kafka and Kafka-Storm architectures. DESCRIPTION Real-Time Streaming with Apache Kafka, Spark, and Storm is a book that provides an overview of the real-time streaming concepts and architectures of Apache Kafka, Storm, and Spark. The readers will learn how to build systems that can process data streams in real time using these technologies. They will be able to process a large amount of real-time data and perform analytics or generate insights as a result of this. The architecture of Kafka and its various components are described in detail. A Kafka Cluster installation and configuration will be demonstrated. The Kafka publisher-subscriber system will be implemented in the Eclipse IDE using the Command Line and Java. The book discusses the architecture of Apache Storm, the concepts of Spout and Bolt, as well as their applications in a Transaction Alert System. It also describes Spark's core concepts, applications, and the use of Spark to implement a microservice. To learn about the process of integrating Kafka and Storm, two approaches to Spark and Kafka integration will be discussed. This book will assist a software engineer to transition to a Big Data engineer and Big Data architect by providing knowledge of big data processing and the architectures of Kafka, Storm, and Spark Streaming. WHAT YOU WILL LEARN ● Creation of Kafka producers, consumers, and brokers using command line. ● End-to-end implementation of Kafka messaging system with Java in Eclipse. ● Perform installation and creation of a Storm Cluster and execute Storm Management commands. ● Implement Spouts, Bolts and a Topology in Storm for Transaction alert application system. ● Perform the implementation of a microservice using Spark in Scala IDE. ● Learn about the various approaches of integrating Kafka and Spark. ● Perform integration of Kafka and Storm using Java in the Eclipse IDE. WHO THIS BOOK IS FOR This book is intended for Software Developers, Data Scientists, and Big Data Architects who want to build software systems to process data streams in real time. To understand the concepts in this book, knowledge of any programming language such as Java, Python, etc. is needed. TABLE OF CONTENTS 1. Introduction to Kafka 2. Installing Kafka 3. Kafka Messaging 4. Kafka Producers 5. Kafka Consumers 6. Introduction to Storm 7. Installation and Configuration 8. Spouts and Bolts 9. Introduction to Spark 10. Spark Streaming 11. Kafka Integration with Storm 12. Kafka Integration with Spark

Book 2020 IEEE 7th International Conference on Data Science and Advanced Analytics  DSAA

Download or read book 2020 IEEE 7th International Conference on Data Science and Advanced Analytics DSAA written by IEEE Staff and published by . This book was released on 2020-10-06 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: DSAA covers data science, statistics, machine learning, knowledge discovery, advanced analytics, big data, computing and their applications

Book Deep Learning for Physical Scientists

Download or read book Deep Learning for Physical Scientists written by Edward O. Pyzer-Knapp and published by John Wiley & Sons. This book was released on 2021-09-20 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome. Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader. From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy: A thorough introduction to the basic classification and regression with perceptrons An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training An examination of multi-layer perceptrons for learning from descriptors and de-noising data Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images A treatment of Bayesian optimization for tuning deep learning architectures Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. Perfect for academic and industrial research professionals in the physical sciences, em style="font-family: Calibri, sans-serif; font-size: 11pt;"Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: •Basic classification and regression with perceptrons •Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training •Multi-Layer Perceptrons for learning from descriptors, and de-noising data •Recurrent neural networks for learning from sequences •Convolutional neural networks for learning from images •Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource. Market Description This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: • Basic classification and regression with perceptrons • Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training • Multi-Layer Perceptrons for learning from descriptors, and de-noising data • Recurrent neural networks for learning from sequences • Convolutional neural networks for learning from images • Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource.

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.