EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Machine Learning Models for Functional Genomics and Therapeutic Design

Download or read book Machine Learning Models for Functional Genomics and Therapeutic Design written by Haoyang Zeng (Ph.D.) and published by . This book was released on 2019 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the limited size of training data available, machine learning models for biology have remained rudimentary and inaccurate despite the significant advance in machine learning research. With the recent advent of high-throughput sequencing technology, an exponentially growing number of genomic and proteomic datasets have been generated. These large-scale datasets admit the training of high-capacity machine learning models to characterize sophisticated features and produce accurate predictions on unseen examples. In this thesis, we attempt to develop advanced machine learning models for functional genomics and therapeutics design, two areas with ample data deposited in public databases and tremendous clinical implications. The shared theme of these models is to learn how the composition of a biological sequence encodes a functional phenotype and then leverage such knowledge to provide insight for target discovery and therapeutic design. First, we design three machine learning models that predict transcription factor binding and DNA methylation, two fundamental epigenetic phenotypes closely tied to gene regulation, from DNA sequence alone. We show that these epigenetic phenotypes can be well predicted from the sequence context. Moreover, the predicted change in phenotype between the reference and alternate allele of a genetic variant accurately reflect its functional impact and improves the identification of regulatory variants causal for complex diseases. Second, we devise two machine learning models that improve the prediction of peptides displayed by the major histocompatibility complex (MHC) on the cell surface. Computational modeling of peptide-display by MHC is central in the design of peptide-based therapeutics. Our first machine learning model introduces the capacity to quantify uncertainty in the computational prediction and proposes a new metric for peptide prioritization that reduces false positives in high-affinity peptide design. The second model improves the state-of-the-art performance in MHC-ligand prediction by employing a deep language model to learn the sequence determinants for auxiliary processes in MHC-ligand selection, such as proteasome cleavage, that are omitted by existing methods due to the lack of labeled data. Third, we develop machine learning frameworks to model the enrichment of an antibody sequence in phage-panning experiments against a target antigen. We show that antibodies with low specificity can be reduced by a computational procedure using machine learning models trained for multiple targets. Moreover, machine learning can help to design novel antibody sequences with improved affinity.

Book Handbook of Machine Learning Applications for Genomics

Download or read book Handbook of Machine Learning Applications for Genomics written by Sanjiban Sekhar Roy and published by Springer Nature. This book was released on 2022-06-23 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians, practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.

Book Artificial Intelligence

Download or read book Artificial Intelligence written by and published by BoD – Books on Demand. This book was released on 2019-07-31 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) is taking on an increasingly important role in our society today. In the early days, machines fulfilled only manual activities. Nowadays, these machines extend their capabilities to cognitive tasks as well. And now AI is poised to make a huge contribution to medical and biological applications. From medical equipment to diagnosing and predicting disease to image and video processing, among others, AI has proven to be an area with great potential. The ability of AI to make informed decisions, learn and perceive the environment, and predict certain behavior, among its many other skills, makes this application of paramount importance in today's world. This book discusses and examines AI applications in medicine and biology as well as challenges and opportunities in this fascinating area.

Book Machine Learning and Network Driven Integrative Genomics

Download or read book Machine Learning and Network Driven Integrative Genomics written by Mehdi Pirooznia and published by Frontiers Media SA. This book was released on 2021-04-29 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Interpretable Machine Learning Methods for Regulatory and Disease Genomics

Download or read book Interpretable Machine Learning Methods for Regulatory and Disease Genomics written by Peyton Greis Greenside and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: It is an incredible feat of nature that the same genome contains the code to every cell in each living organism. From this same genome, each unique cell type gains a different program of gene expression that enables the development and function of an organism throughout its lifespan. The non-coding genome - the ~98 of the genome that does not code directly for proteins - serves an important role in generating the diverse programs of gene expression turned on in each unique cell state. A complex network of proteins bind specific regulatory elements in the non-coding genome to regulate the expression of nearby genes. While basic principles of gene regulation are understood, the regulatory code of which factors bind together at which genomic elements to turn on which genes remains to be revealed. Further, we do not understand how disruptions in gene regulation, such as from mutations that fall in non-coding regions, ultimately lead to disease or other changes in cell state. In this work we present several methods developed and applied to learn the regulatory code or the rules that govern non-coding regions of the genome and how they regulate nearby genes. We first formulate the problem as one of learning pairs of sequence motifs and expressed regulator proteins that jointly predict the state of the cell, such as the cell type specific gene expression or chromatin accessibility. Using pre-engineered sequence features and known expression, we use a paired-feature boosting approach to build an interpretable model of how the non-coding genome contributes to cell state. We also demonstrate a novel improvement to this method that takes into account similarities between closely related cell types by using a hierarchy imposed on all of the predicted cell states. We apply this method to discover validated regulators of tadpole tail regeneration and to predict protein-ligand binding interactions. Recognizing the need for improved sequence features and stronger predictive performance, we then move to a deep learning modeling framework to predict epigenomic phenotypes such as chromatin accessibility from just underlying DNA sequence. We use deep learning models, specifically multi-task convolutional neural networks, to learn a featurization of sequences over several kilobases long and their mapping to a functional phenotype. We develop novel architectures that encode principles of genomics in models typically designed for computer vision, such as incorporating reverse complementation and the 3D structure of the genome. We also develop methods to interpret traditionally ``black box" neural networks by 1) assigning importance scores to each input sequence to the model, 2) summarizing non-redundant patterns learned by the model that are predictive in each cell type, and 3) discovering interactions learned by the model that provide indications as to how different non-coding sequence features depend on each other. We apply these methods in the system of hematopoiesis to interpret chromatin dynamics across differentiation of blood cell types, to understand immune stimulation, and to interpret immune disease-associated variants that fall in non-coding regions. We demonstrate strong performance of our boosting and deep learning models and demonstrate improved performance of these machine learning frameworks when taking into account existing knowledge about the biological system being modeled. We benchmark our interpretation methods using gold standard systems and existing experimental data where available. We confirm existing knowledge surrounding essential factors in hematopoiesis, and also generate novel hypotheses surrounding how factors interact to regulate differentiation. Ultimately our work provides a set of tools for researchers to probe and understand the non-coding genome and its role in controlling gene expression as well as a set of novel insights surrounding how hematopoiesis is controlled on many scales from global quantification of regulatory sequence to interpretation of individual variants.

Book Machine Learning and Systems Biology in Genomics and Health

Download or read book Machine Learning and Systems Biology in Genomics and Health written by Shailza Singh and published by Springer Nature. This book was released on 2022-02-04 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the application of machine learning in genomics. Machine Learning offers ample opportunities for Big Data to be assimilated and comprehended effectively using different frameworks. Stratification, diagnosis, classification and survival predictions encompass the different health care regimes representing unique challenges for data pre-processing, model training, refinement of the systems with clinical implications. The book discusses different models for in-depth analysis of different conditions. Machine Learning techniques have revolutionized genomic analysis. Different chapters of the book describe the role of Artificial Intelligence in clinical and genomic diagnostics. It discusses how systems biology is exploited in identifying the genetic markers for drug discovery and disease identification. Myriad number of diseases whether be infectious, metabolic, cancer can be dealt in effectively which combines the different omics data for precision medicine. Major breakthroughs in the field would help reflect more new innovations which are at their pinnacle stage. This book is useful for researchers in the fields of genomics, genetics, computational biology and bioinformatics.

Book Beyond Predictive Modeling

Download or read book Beyond Predictive Modeling written by Ge Liu (Ph. D.) and published by . This book was released on 2020 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next generation sequencing and large-scale synthetic DNA synthesis have enabled advances in biological studies by providing high-throughput data that can eciently train machine learning models. Deep learning models have proven to provide state-of-the- art performance for predictive tasks across many biological applications. However, black-box predictive modeling is not sucient for scientific discovery in biology. For discovery it is important to nd the mechanisms that underlie outcomes. Mechanism discovery requires the visualization and interpretation of black-box predictive models. Discovery further requires analyzing data from exploratory experiments, and such experiments may produce data that is dissimilar from previous observations and thus be outside of a model's training distribution. Recognizing and quantifying the uncertainty of model predictions on out-of-distribution data is crucial for proper experiment interpretation. Moreover, therapeutic molecular design usually involves iterations of proposing and testing new candidates, which require sequential decision making and directed optimization of molecules in a multiplexed fashion. Finally, certain machine learning design tasks such as vaccine design need to meet objectives such as population coverage which require ecient algorithms for combinatorial optimization. This thesis investigates and proposes novel techniques in four areas: model interpretation, model uncertainty, generating optimized antibody candidates, and optimization of vaccines with population coverage objectives. We first present Deep-Resolve, a novel analysis framework for deep convolutional models of genome function that visualizes how input features contribute individually and combinatorially to network decisions. Unlike other methods, Deep-Resolve does not depend upon the analysis of a predefined set of inputs. Rather, it uses gradient ascent to stochastically explore intermediate feature maps to 1) discover important features, 2) visualize their contribution and interaction patterns, and 3) analyze feature sharing across tasks that suggests shared biological mechanism. Next, we introduce Maximize Overall Diversity (MOD), an approach to improve ensemble-based uncertainty estimates by encouraging larger overall diversity in deep ensemble predictions across all possible inputs. We also explore variations of MOD utilizing adversarial techniques (MOD-Adv) and data density estimation (MOD-R). We show that for out-of-distribution test examples, MOD improves predictive performance and uncertainty calibration on multiple regression and Bayesian Optimization tasks. Thirdly, we use ensembles of deep learning models and gradient based optimization in antibody sequence design. We optimize antibodies for optimized binding affinity and specicity, and experimentally confirm our optimization results. Last, we combine deep learning models for predicting peptide MHC display with population frequency objectives to create a novel vaccine design tool, OptiVax, that estimates and optimizes the population coverage of peptide vaccines to facilitate robust immune responses. We used OptiVax to design peptide vaccines for SARS-CoV-2 and achieved superior predicted population coverage when compared to 29 public baseline designs. Collectively our studies will enable the application of deep learning in broad range of scenarios in biological studies.

Book Multivariate Statistical Machine Learning Methods for Genomic Prediction

Download or read book Multivariate Statistical Machine Learning Methods for Genomic Prediction written by Osval Antonio Montesinos López and published by Springer Nature. This book was released on 2022-02-14 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Book Machine Learning in Radiation Oncology

Download or read book Machine Learning in Radiation Oncology written by Issam El Naqa and published by Springer. This book was released on 2015-06-19 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.

Book Artificial Intelligence and Machine Learning in Drug Design and Development

Download or read book Artificial Intelligence and Machine Learning in Drug Design and Development written by Abhirup Khanna and published by John Wiley & Sons. This book was released on 2024-06-21 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a comprehensive guide that explores the use of artificial intelligence and machine learning in drug discovery and development covering a range of topics, including the use of molecular modeling, docking, identifying targets, selecting compounds, and optimizing drugs. The intersection of Artificial Intelligence (AI) and Machine Learning (ML) within the field of drug design and development represents a pivotal moment in the history of healthcare and pharmaceuticals. The remarkable synergy between cutting-edge technology and the life sciences has ushered in a new era of possibilities, offering unprecedented opportunities, formidable challenges, and a tantalizing glimpse into the future of medicine. AI can be applied to all the key areas of the pharmaceutical industry, such as drug discovery and development, drug repurposing, and improving productivity within a short period. Contemporary methods have shown promising results in facilitating the discovery of drugs to target different diseases. Moreover, AI helps in predicting the efficacy and safety of molecules and gives researchers a much broader chemical pallet for the selection of the best molecules for drug testing and delivery. In this context, drug repurposing is another important topic where AI can have a substantial impact. With the vast amount of clinical and pharmaceutical data available to date, AI algorithms find suitable drugs that can be repurposed for alternative use in medicine. This book is a comprehensive exploration of this dynamic and rapidly evolving field. In an era where precision and efficiency are paramount in drug discovery, AI and ML have emerged as transformative tools, reshaping the way we identify, design, and develop pharmaceuticals. This book is a testament to the profound impact these technologies have had and will continue to have on the pharmaceutical industry, healthcare, and ultimately, patient well-being. The editors of this volume have assembled a distinguished group of experts, researchers, and thought leaders from both the AI, ML, and pharmaceutical domains. Their collective knowledge and insights illuminate the multifaceted landscape of AI and ML in drug design and development, offering a roadmap for navigating its complexities and harnessing its potential. In each section, readers will find a rich tapestry of knowledge, case studies, and expert opinions, providing a 360-degree view of AI and ML’s role in drug design and development. Whether you are a researcher, scientist, industry professional, policymaker, or simply curious about the future of medicine, this book offers 19 state-of-the-art chapters providing valuable insights and a compass to navigate the exciting journey ahead. Audience The book is a valuable resource for a wide range of professionals in the pharmaceutical and allied industries including researchers, scientists, engineers, and laboratory workers in the field of drug discovery and development, who want to learn about the latest techniques in machine learning and AI, as well as information technology professionals who are interested in the application of machine learning and artificial intelligence in drug development.

Book Machine Learning in Bioinformatics

Download or read book Machine Learning in Bioinformatics written by Yanqing Zhang and published by John Wiley & Sons. This book was released on 2009-02-23 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to machine learning methods and their applications to problems in bioinformatics Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more. Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels.

Book Artificial Intelligence in Healthcare

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Book Methods and Applications of Artificial Intelligence

Download or read book Methods and Applications of Artificial Intelligence written by George A. Vouros and published by Springer Science & Business Media. This book was released on 2004-04-22 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arti?cial intelligence has attracted a renewed interest from distinguished sci- tists and has again raised new, more realistic this time, expectations for future advances regarding the development of theories, models and techniques and the use of them in applications pervading many areas of our daily life. The borders of human-level intelligence are still very far away and possibly unknown. Nev- theless, recent scienti?c work inspires us to work even harder in our exploration of the unknown lands of intelligence. This volume contains papers selected for presentation at the 3rd Hellenic Conference on Arti?cial Intelligence (SETN 2004), the o?cial meeting of the Hellenic Society for Arti?cial Intelligence (EETN). The ?rst meeting was held in the University of Piraeus, 1996 and the second in the Aristotle University of Thessaloniki (AUTH), 2002. SETN conferences play an important role in the dissemination of the in- vative and high-quality scienti?c results in arti?cial intelligence which are being produced mainly by Greek scientists in institutes all over the world. However, the most important e?ect of SETN conferences is that they provide the context in which people meet and get to know each other, as well as a very good opp- tunity for students to get closer to the results of innovative arti?cial intelligence research.

Book Machine Learning and Data Mining for Yeast Functional Genomics

Download or read book Machine Learning and Data Mining for Yeast Functional Genomics written by Amanda Clare and published by . This book was released on 2003 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Genomics

    Book Details:
  • Author : Vijai Singh
  • Publisher : Springer Nature
  • Release :
  • ISBN : 9819731690
  • Pages : 424 pages

Download or read book Advances in Genomics written by Vijai Singh and published by Springer Nature. This book was released on with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Predictive Modeling

    Book Details:
  • Author : Max Kuhn
  • Publisher : Springer Science & Business Media
  • Release : 2013-05-17
  • ISBN : 1461468493
  • Pages : 595 pages

Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Book Elements of Causal Inference

Download or read book Elements of Causal Inference written by Jonas Peters and published by MIT Press. This book was released on 2017-11-29 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.