Download or read book Machine Learning Methods with Noisy Incomplete or Small Datasets written by Jordi Solé-Casals and published by MDPI. This book was released on 2021-08-17 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past years, businesses have had to tackle the issues caused by numerous forces from political, technological and societal environment. The changes in the global market and increasing uncertainty require us to focus on disruptive innovations and to investigate this phenomenon from different perspectives. The benefits of innovations are related to lower costs, improved efficiency, reduced risk, and better response to the customers’ needs due to new products, services or processes. On the other hand, new business models expose various risks, such as cyber risks, operational risks, regulatory risks, and others. Therefore, we believe that the entrepreneurial behavior and global mindset of decision-makers significantly contribute to the development of innovations, which benefit by closing the prevailing gap between developed and developing countries. Thus, this Special Issue contributes to closing the research gap in the literature by providing a platform for a scientific debate on innovation, internationalization and entrepreneurship, which would facilitate improving the resilience of businesses to future disruptions. Order Your Print Copy
Download or read book Machine Learning with Noisy Labels written by Gustavo Carneiro and published by Elsevier. This book was released on 2024-02-23 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably trained and deployed. However, the expensive labelling process involved in the acquisition of such training sets limits the number and size of datasets available to build new models, slowing down progress in the field. Alternatively, many poorly curated training sets containing noisy labels are readily available to be used to build new models. However, the successful exploration of such noisy-label training sets depends on the development of algorithms and models that are robust to these noisy labels.Machine learning and Noisy Labels: Definitions, Theory, Techniques and Solutions defines different types of label noise, introduces the theory behind the problem, presents the main techniques that enable the effective use of noisy-label training sets, and explains the most accurate methods developed in the field.This book is an ideal introduction to machine learning with noisy labels suitable for senior undergraduates, post graduate students, researchers and practitioners using, and researching into, machine learning methods. - Shows how to design and reproduce regression, classification and segmentation models using large-scale noisy-label training sets - Gives an understanding of the theory of, and motivation for, noisy-label learning - Shows how to classify noisy-label learning methods into a set of core techniques
Download or read book Machine Learning and Principles and Practice of Knowledge Discovery in Databases written by Irena Koprinska and published by Springer Nature. This book was released on 2023-01-30 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the papers of several workshops which were held in conjunction with the International Workshops of ECML PKDD 2022 on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022, held in Grenoble, France, during September 19–23, 2022. The 73 revised full papers and 6 short papers presented in this book were carefully reviewed and selected from 143 submissions. ECML PKDD 2022 presents the following five workshops: Workshop on Data Science for Social Good (SoGood 2022) Workshop on New Frontiers in Mining Complex Patterns (NFMCP 2022) Workshop on Explainable Knowledge Discovery in Data Mining (XKDD 2022) Workshop on Uplift Modeling (UMOD 2022) Workshop on IoT, Edge and Mobile for Embedded Machine Learning (ITEM 2022) Workshop on Mining Data for Financial Application (MIDAS 2022) Workshop on Machine Learning for Cybersecurity (MLCS 2022) Workshop on Machine Learning for Buildings Energy Management (MLBEM 2022) Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2022) Workshop on Data Analysis in Life Science (DALS 2022) Workshop on IoT Streams for Predictive Maintenance (IoT-PdM 2022)
Download or read book Futuristic Trends for Sustainable Development and Sustainable Ecosystems written by Ortiz-Rodriguez, Fernando and published by IGI Global. This book was released on 2022-06-24 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: A key focus in recent years has been on sustainable development and promoting environmentally conscious practices. In today’s rapidly evolving technological world, it is important to consider how technology can be applied to solve problems across disciplines and fields in these areas. Further study is needed in order to understand how technology can be applied to sustainability and the best practices, considerations, and challenges that follow. Futuristic Trends for Sustainable Development and Sustainable Ecosystems discusses recent advances and innovative research in the area of information and communication technology for sustainable development and covers practices in several artificial intelligence fields such as knowledge representation and reasoning, natural language processing, machine learning, and the semantic web. Covering topics such as blockchain, deep learning, and renewable energy, this reference work is ideal for computer scientists, industry professionals, researchers, academicians, scholars, instructors, and students.
Download or read book In Memory Computing Hardware Accelerators for Data Intensive Applications written by Baker Mohammad and published by Springer Nature. This book was released on 2023-10-27 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the state-of-the-art of technology and research on In-Memory Computing Hardware Accelerators for Data-Intensive Applications. The authors discuss how processing-centric computing has become insufficient to meet target requirements and how Memory-centric computing may be better suited for the needs of current applications. This reveals for readers how current and emerging memory technologies are causing a shift in the computing paradigm. The authors do deep-dive discussions on volatile and non-volatile memory technologies, covering their basic memory cell structures, operations, different computational memory designs and the challenges associated with them. Specific case studies and potential applications are provided along with their current status and commercial availability in the market.
Download or read book Database and Expert Systems Applications written by Christine Strauss and published by Springer Nature. This book was released on with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Machine Learning and Data Science Blueprints for Finance written by Hariom Tatsat and published by "O'Reilly Media, Inc.". This book was released on 2020-10-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations
Download or read book Innovations in Electronics and Communication Engineering written by H. S. Saini and published by Springer Nature. This book was released on 2022-03-12 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers various streams of communication engineering like signal processing, VLSI design, embedded systems, wireless communications and electronics and communications in general. The book is a collection of best selected research papers presented at 9th International Conference on Innovations in Electronics and Communication Engineering at Guru Nanak Institutions Hyderabad, India. The book presents works from researchers, technocrats and experts about latest technologies in electronic and communication engineering. The authors have discussed the latest cutting edge technology, and the book will serve as a reference for young researchers.
Download or read book Graph Learning for Brain Imaging written by Feng Liu and published by Frontiers Media SA. This book was released on 2022-09-30 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Symmetry and Exact Solutions of Nonlinear Mathematical Physics Equations written by Gangwei Wang and published by Frontiers Media SA. This book was released on 2024-08-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear problems, originating from applied science that is closely related to practices, contain rich and extensive content. It makes the corresponding nonlinear models also complex and diverse. Due to the intricacy and contingency of nonlinear problems, unified mathematical methods still remain far and few between. In this regard, the comprehensive use of symmetric methods, along with other mathematical methods, becomes an effective option to solve nonlinear problems.
Download or read book Genomics at the Nexus of AI Computer Vision and Machine Learning written by Shilpa Choudhary and published by John Wiley & Sons. This book was released on 2024-10-01 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive understanding of cutting-edge research and applications at the intersection of genomics and advanced AI techniques and serves as an essential resource for researchers, bioinformaticians, and practitioners looking to leverage genomics data for AI-driven insights and innovations. The book encompasses a wide range of topics, starting with an introduction to genomics data and its unique characteristics. Each chapter unfolds a unique facet, delving into the collaborative potential and challenges that arise from advanced technologies. It explores image analysis techniques specifically tailored for genomic data. It also delves into deep learning showcasing the power of convolutional neural networks (CNN) and recurrent neural networks (RNN) in genomic image analysis and sequence analysis. Readers will gain practical knowledge on how to apply deep learning techniques to unlock patterns and relationships in genomics data. Transfer learning, a popular technique in AI, is explored in the context of genomics, demonstrating how knowledge from pre-trained models can be effectively transferred to genomic datasets, leading to improved performance and efficiency. Also covered is the domain adaptation techniques specifically tailored for genomics data. The book explores how genomics principles can inspire the design of AI algorithms, including genetic algorithms, evolutionary computing, and genetic programming. Additional chapters delve into the interpretation of genomic data using AI and ML models, including techniques for feature importance and visualization, as well as explainable AI methods that aid in understanding the inner workings of the models. The applications of genomics in AI span various domains, and the book explores AI-driven drug discovery and personalized medicine, genomic data analysis for disease diagnosis and prognosis, and the advancement of AI-enabled genomic research. Lastly, the book addresses the ethical considerations in integrating genomics with AI, computer vision, and machine learning. Audience The book will appeal to biomedical and computer/data scientists and researchers working in genomics and bioinformatics seeking to leverage AI, computer vision, and machine learning for enhanced analysis and discovery; healthcare professionals advancing personalized medicine and patient care; industry leaders and decision-makers in biotechnology, pharmaceuticals, and healthcare industries seeking strategic insights into the integration of genomics and advanced technologies.
Download or read book Data Science and Machine Learning for Non Programmers written by Dothang Truong and published by CRC Press. This book was released on 2024-02-23 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: As data continues to grow exponentially, knowledge of data science and machine learning has become more crucial than ever. Machine learning has grown exponentially; however, the abundance of resources can be overwhelming, making it challenging for new learners. This book aims to address this disparity and cater to learners from various non-technical fields, enabling them to utilize machine learning effectively. Adopting a hands-on approach, readers are guided through practical implementations using real datasets and SAS Enterprise Miner, a user-friendly data mining software that requires no programming. Throughout the chapters, two large datasets are used consistently, allowing readers to practice all stages of the data mining process within a cohesive project framework. This book also provides specific guidelines and examples on presenting data mining results and reports, enhancing effective communication with stakeholders. Designed as a guiding companion for both beginners and experienced practitioners, this book targets a wide audience, including students, lecturers, researchers, and industry professionals from various backgrounds.
Download or read book Master Machine Learning Algorithms written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2016-03-04 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: You must understand the algorithms to get good (and be recognized as being good) at machine learning. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work, then implement them from scratch, step-by-step.
Download or read book Machine Learning and Knowledge Discovery in Databases Research Track written by Nuria Oliver and published by Springer Nature. This book was released on 2021-09-10 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications. Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety. Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics. Applied Data Science Track: Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation. Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media.
Download or read book Machine Learning and Artificial Intelligence in Chemical and Biological Sensing written by Jeong-Yeol Yoon and published by Elsevier. This book was released on 2024-07-07 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning (ML) has recently become popular in chemical and biological sensing applications. ML is a subset of artificial intelligence (AI) and other AI techniques have been used in various chemical and biological sensing. Machine Learning and Artificial Intelligence in Chemical and Biological Sensing covers the theoretical background and practical applications of various ML/AI methods toward chemical and biological sensing. No comprehensive reference text has been available previously to cover the wide breadth of this topic. The Editors have written the first three chapters to firmly introduce the reader to fundamental ML theories that can be used for chemical/biosensing. The subsequent chapters then cover the practical applications with contributions by various experts in the field. They show how ML and AI-based techniques can provide solutions for: 1) identifying and quantifying target molecules when specific receptors are unavailable 2) analyzing complex mixtures of target molecules, such as gut microbiome and soil microbiome 3) analyzing high-throughput and high-dimensional data, such as drug screening, molecular interaction, and environmental toxicant analysis, 4) analyzing complex data sets where fingerprinting approach is needed This book is written primarily for upper undergraduate students, graduate students, research staff, and faculty members at teaching and research universities and colleges who are working on chemical sensing, biosensing, analytical chemistry, analytical biochemistry, biomedical imaging, medical diagnostics, environmental monitoring, and agricultural applications. - Presents the first comprehensive reference text on the use of ML and AI for chemical and biological sensing - Provides a firm grounding in the fundamental theories on ML and AI before covering the practical applications with contributions by various experts in the field - Includes a wide array of practical applications covered, including: E-nose, Raman, SERS, lens-free imaging, multi/hyperspectral imaging, NIR/optical imaging, receptor-free biosensing, paper microfluidics, single molecule analysis in biomedicine, in situ protein characterization, microbial population dynamics, and all-in-one sensor systems
Download or read book Control and Information Sciences written by I. Thirunavukkarasu and published by Springer Nature. This book was released on with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Machine Learning Refined written by Jeremy Watt and published by Cambridge University Press. This book was released on 2020-01-09 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.