EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Machine Learning Methods for Single cell RNA sequencing Data Analysis

Download or read book Machine Learning Methods for Single cell RNA sequencing Data Analysis written by Chuanqi Wang and published by . This book was released on 2021 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Machine Learning in Single Cell RNA seq Data Analysis

Download or read book Machine Learning in Single Cell RNA seq Data Analysis written by Khalid Raza and published by Springer Nature. This book was released on with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Benchmarking Statistical and Machine Learning Methods for Single cell RNA Sequencing Data

Download or read book Benchmarking Statistical and Machine Learning Methods for Single cell RNA Sequencing Data written by Nan Xi and published by . This book was released on 2021 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The large-scale, high-dimensional, and sparse single-cell RNA sequencing (scRNA-seq) data have raised great challenges in the pipeline of data analysis. A large number of statistical and machine learning methods have been developed to analyze scRNA-seq data and answer related scientific questions. Although different methods claim advantages in certain circumstances, it is difficult for users to select appropriate methods for their analysis tasks. Benchmark studies aim to provide recommendations for method selection based on an objective, accurate, and comprehensive comparison among cutting-edge methods. They can also offer suggestions for further methodological development through massive evaluations conducted on real data. In Chapter 2, we conduct the first, systematic benchmark study of nine cutting-edge computational doublet-detection methods. In scRNA-seq, doublets form when two cells are encapsulated into one reaction volume by chance. The existence of doublets, which appear as but are not real cells, is a key confounder in scRNA-seq data analysis. Computational methods have been developed to detect doublets in scRNA-seq data; however, the scRNA-seq field lacks a comprehensive benchmarking of these methods, making it difficult for researchers to choose an appropriate method for their specific analysis needs. Our benchmark study compares doublet-detection methods in terms of their detection accuracy under various experimental settings, impacts on downstream analyses, and computational efficiency. Our results show that existing methods exhibited diverse performance and distinct advantages in different aspects. In Chapter 3, we develop an R package DoubletCollection to integrate the installation and execution of different doublet-detection methods. Traditional benchmark studies can be quickly out-of-date due to their static design and the rapid growth of available methods. DoubletCollection addresses this issue in benchmarking doublet-detection methods for scRNA-seq data. DoubletCollection provides a unified interface to perform and visualize downstream analysis after doublet-detection. Additionally, we created a protocol using DoubletCollection to execute and benchmark doublet-detection methods. This protocol can automatically accommodate new doublet-detection methods in the fast-growing scRNA-seq field. In Chapter 4, we conduct the first comprehensive empirical study to explore the best modeling strategy for autoencoder-based imputation methods specific to scRNA-seq data. The autoencoder-based imputation method is a family of promising methods to denoise sparse scRNA-seq data; however, the design of autoencoders has not been formally discussed in the literature. Current autoencoder-based imputation methods either borrow the practice from other fields or design the model on an ad hoc basis. We find that the method performance is sensitive to the key hyperparameter of autoencoders, including architecture, activation function, and regularization. Their optimal settings on scRNA-seq are largely different from those on other data types. Our results emphasize the importance of exploring hyperparameter space in such complex and flexible methods. Our work also points out the future direction of improving current methods.

Book Machine Learning in Single Cell RNA seq Data Analysis

Download or read book Machine Learning in Single Cell RNA seq Data Analysis written by Khalid Raza and published by Springer. This book was released on 2024-09-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of cellular diversity and function, offering unprecedented insights into the intricate tapestry of gene expression at the single-cell level. However, the deluge of data generated by these experiments presents a formidable challenge, demanding advanced analytical tools, methodologies, and skills for meaningful interpretation. This book bridges the gap between traditional bioinformatics and the evolving landscape of machine learning. Authored by seasoned experts at the intersection of genomics and artificial intelligence, this book serves as a roadmap for leveraging machine learning algorithms to extract meaningful patterns and uncover hidden biological insights within scRNA-seq datasets.

Book Graph Representation Learning

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Book Gene Expression Data Analysis

Download or read book Gene Expression Data Analysis written by Pankaj Barah and published by CRC Press. This book was released on 2021-11-08 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of high-throughput technologies in molecular biology during the last two decades has contributed to the production of tremendous amounts of data. Microarray and RNA sequencing are two such widely used high-throughput technologies for simultaneously monitoring the expression patterns of thousands of genes. Data produced from such experiments are voluminous (both in dimensionality and numbers of instances) and evolving in nature. Analysis of huge amounts of data toward the identification of interesting patterns that are relevant for a given biological question requires high-performance computational infrastructure as well as efficient machine learning algorithms. Cross-communication of ideas between biologists and computer scientists remains a big challenge. Gene Expression Data Analysis: A Statistical and Machine Learning Perspective has been written with a multidisciplinary audience in mind. The book discusses gene expression data analysis from molecular biology, machine learning, and statistical perspectives. Readers will be able to acquire both theoretical and practical knowledge of methods for identifying novel patterns of high biological significance. To measure the effectiveness of such algorithms, we discuss statistical and biological performance metrics that can be used in real life or in a simulated environment. This book discusses a large number of benchmark algorithms, tools, systems, and repositories that are commonly used in analyzing gene expression data and validating results. This book will benefit students, researchers, and practitioners in biology, medicine, and computer science by enabling them to acquire in-depth knowledge in statistical and machine-learning-based methods for analyzing gene expression data. Key Features: An introduction to the Central Dogma of molecular biology and information flow in biological systems A systematic overview of the methods for generating gene expression data Background knowledge on statistical modeling and machine learning techniques Detailed methodology of analyzing gene expression data with an example case study Clustering methods for finding co-expression patterns from microarray, bulkRNA, and scRNA data A large number of practical tools, systems, and repositories that are useful for computational biologists to create, analyze, and validate biologically relevant gene expression patterns Suitable for multidisciplinary researchers and practitioners in computer science and the biological sciences

Book Handbook of Machine Learning Applications for Genomics

Download or read book Handbook of Machine Learning Applications for Genomics written by Sanjiban Sekhar Roy and published by Springer Nature. This book was released on 2022-06-23 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians, practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.

Book Computational Methods for Single Cell Data Analysis

Download or read book Computational Methods for Single Cell Data Analysis written by Guo-Cheng Yuan and published by Humana Press. This book was released on 2019-02-14 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.

Book Machine Learning Based Methods for RNA Data Analysis

Download or read book Machine Learning Based Methods for RNA Data Analysis written by Lihong Peng and published by Frontiers Media SA. This book was released on 2022-06-16 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Tumor Immunology and Immunotherapy   Cellular Methods Part B

Download or read book Tumor Immunology and Immunotherapy Cellular Methods Part B written by and published by Academic Press. This book was released on 2020-01-29 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tumor Immunology and Immunotherapy – Cellular Methods Part B, Volume 632, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics covered include Quantitation of calreticulin exposure associated with immunogenic cell death, Side-by-side comparisons of flow cytometry and immunohistochemistry for detection of calreticulin exposure in the course of immunogenic cell death, Quantitative determination of phagocytosis by bone marrow-derived dendritic cells via imaging flow cytometry, Cytofluorometric assessment of dendritic cell-mediated uptake of cancer cell apoptotic bodies, Methods to assess DC-dependent priming of T cell responses by dying cells, and more. Contains content written by authorities in the field Provides a comprehensive view on the topics covered Includes a high level of detail

Book Bioinformatics Analysis of Single Cell Sequencing Data and Applications in Precision Medicine

Download or read book Bioinformatics Analysis of Single Cell Sequencing Data and Applications in Precision Medicine written by Jialiang Yang and published by Frontiers Media SA. This book was released on 2020-02-27 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Statistical Genomics

Download or read book Handbook of Statistical Genomics written by David J. Balding and published by John Wiley & Sons. This book was released on 2019-07-09 with total page 1828 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.

Book Machine learning based methods for RNA data analysis  volume II

Download or read book Machine learning based methods for RNA data analysis volume II written by Lihong Peng and published by Frontiers Media SA. This book was released on 2023-01-02 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Machine learning based methods for RNA data analysis   volume III

Download or read book Machine learning based methods for RNA data analysis volume III written by Lihong Peng and published by Frontiers Media SA. This book was released on 2023-02-17 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Deep Learning in Biology and Medicine

Download or read book Deep Learning in Biology and Medicine written by Davide Bacciu and published by World Scientific Publishing Europe Limited. This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.

Book Classification in BioApps

Download or read book Classification in BioApps written by Nilanjan Dey and published by Springer. This book was released on 2017-11-10 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on classification in biomedical image applications presents original and valuable research work on advances in this field, which covers the taxonomy of both supervised and unsupervised models, standards, algorithms, applications and challenges. Further, the book highlights recent scientific research on artificial neural networks in biomedical applications, addressing the fundamentals of artificial neural networks, support vector machines and other advanced classifiers, as well as their design and optimization. In addition to exploring recent endeavours in the multidisciplinary domain of sensors, the book introduces readers to basic definitions and features, signal filters and processing, biomedical sensors and automation of biomeasurement systems. The target audience includes researchers and students at engineering and medical schools, researchers and engineers in the biomedical industry, medical doctors and healthcare professionals.

Book Computational Optimal Transport

Download or read book Computational Optimal Transport written by Gabriel Peyre and published by Foundations and Trends(r) in M. This book was released on 2019-02-12 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.