Download or read book Handbook of Research on Smart Technology Models for Business and Industry written by Thomas, J. Joshua and published by IGI Global. This book was released on 2020-06-19 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in machine learning techniques and ever-increasing computing power has helped create a new generation of hardware and software technologies with practical applications for nearly every industry. As the progress has, in turn, excited the interest of venture investors, technology firms, and a growing number of clients, implementing intelligent automation in both physical and information systems has become a must in business. Handbook of Research on Smart Technology Models for Business and Industry is an essential reference source that discusses relevant abstract frameworks and the latest experimental research findings in theory, mathematical models, software applications, and prototypes in the area of smart technologies. Featuring research on topics such as digital security, renewable energy, and intelligence management, this book is ideally designed for machine learning specialists, industrial experts, data scientists, researchers, academicians, students, and business professionals seeking coverage on current smart technology models.
Download or read book Head First Python written by Paul Barry and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Want to learn the Python language without slogging your way through how-to manuals? With Head First Python, you’ll quickly grasp Python’s fundamentals, working with the built-in data structures and functions. Then you’ll move on to building your very own webapp, exploring database management, exception handling, and data wrangling. If you’re intrigued by what you can do with context managers, decorators, comprehensions, and generators, it’s all here. This second edition is a complete learning experience that will help you become a bonafide Python programmer in no time. Why does this book look so different? Based on the latest research in cognitive science and learning theory, Head First Pythonuses a visually rich format to engage your mind, rather than a text-heavy approach that puts you to sleep. Why waste your time struggling with new concepts? This multi-sensory learning experience is designed for the way your brain really works.
Download or read book Introduction to Artificial Neural Systems written by Jacek M. Zurada and published by Brooks/Cole. This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Machine Learning Solutions written by Jalaj Thanaki and published by Packt Publishing Ltd. This book was released on 2018-04-27 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical, hands-on solutions in Python to overcome any problem in Machine Learning Key Features Master the advanced concepts, methodologies, and use cases of machine learning Build ML applications for analytics, NLP and computer vision domains Solve the most common problems in building machine learning models Book Description Machine learning (ML) helps you find hidden insights from your data without the need for explicit programming. This book is your key to solving any kind of ML problem you might come across in your job. You’ll encounter a set of simple to complex problems while building ML models, and you'll not only resolve these problems, but you’ll also learn how to build projects based on each problem, with a practical approach and easy-to-follow examples. The book includes a wide range of applications: from analytics and NLP, to computer vision domains. Some of the applications you will be working on include stock price prediction, a recommendation engine, building a chat-bot, a facial expression recognition system, and many more. The problem examples we cover include identifying the right algorithm for your dataset and use cases, creating and labeling datasets, getting enough clean data to carry out processing, identifying outliers, overftting datasets, hyperparameter tuning, and more. Here, you'll also learn to make more timely and accurate predictions. In addition, you'll deal with more advanced use cases, such as building a gaming bot, building an extractive summarization tool for medical documents, and you'll also tackle the problems faced while building an ML model. By the end of this book, you'll be able to fine-tune your models as per your needs to deliver maximum productivity. What you will learn Select the right algorithm to derive the best solution in ML domains Perform predictive analysis effciently using ML algorithms Predict stock prices using the stock index value Perform customer analytics for an e-commerce platform Build recommendation engines for various domains Build NLP applications for the health domain Build language generation applications using different NLP techniques Build computer vision applications such as facial emotion recognition Who this book is for This book is for the intermediate users such as machine learning engineers, data engineers, data scientists, and more, who want to solve simple to complex machine learning problems in their day-to-day work and build powerful and efficient machine learning models. A basic understanding of the machine learning concepts and some experience with Python programming is all you need to get started with this book.
Download or read book Data Mining Algorithms written by Pawel Cichosz and published by John Wiley & Sons. This book was released on 2015-01-27 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.
Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Download or read book Challenges and Applications of Data Analytics in Social Perspectives written by Sathiyamoorthi, V. and published by IGI Global. This book was released on 2020-12-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.
Download or read book Stock Prediction with Deep Learning written by Ethan Shaotran and published by . This book was released on 2018-06-10 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: For centuries, human beings have tried to predict the future, whether it be NBA playoffs, weather, or elections. In this book, we tackle the common misconception that the stock market cannot be predicted, and build a stock prediction algorithm to beat the stock market, using Deep Learning, Data Analysis, and Natural Language Processing techniques.If you're new to Artificial Intelligence and Python, and are curious to learn more, this is a great book for you! Industry experts also have plenty to learn from the variety of methods and techniques used in data collection and manipulation.ABOUT THE AUTHOREthan Shaotran is an AI developer, researcher, and author of "Stock Prediction with Deep Learning". He is the founder of Energize.AI, where he built a financial stock prediction algorithm that outperformed the stock market in 2017. He is currently working on a thought experiment series to raise awareness on AI-related societal challenges within the AI community, regarding regulation and potential moral hazards, as well as autonomous vehicle driving software. Ethan has studied Economics and AI courses from Harvard, Stanford, and USF, is an affiliate with the Harvard Kennedy School's AI Initiative and is a member of the Association for Computing Machinery.
Download or read book ICDSMLA 2019 written by Amit Kumar and published by Springer Nature. This book was released on 2020-05-19 with total page 2010 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected high-impact articles from the 1st International Conference on Data Science, Machine Learning & Applications 2019. It highlights the latest developments in the areas of Artificial Intelligence, Machine Learning, Soft Computing, Human–Computer Interaction and various data science & machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.
Download or read book Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2017-07-24 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.
Download or read book Information Technology and Systems written by Álvaro Rocha and published by Springer. This book was released on 2019-01-28 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of articles from The 2019 International Conference on Information Technology & Systems (ICITS’19), held at the Universidad de Las Fuerzas Armadas, in Quito, Ecuador, on 6th to 8th February 2019. ICIST is a global forum for researchers and practitioners to present and discuss recent findings and innovations, current trends, professional experiences and challenges of modern information technology and systems research, together with their technological development and applications. The main topics covered are: information and knowledge management; organizational models and information systems; software and systems modeling; software systems, architectures, applications and tools; multimedia systems and applications; computer networks, mobility and pervasive systems; intelligent and decision support systems; big data analytics and applications; human–computer interaction; ethics, computers & security; health informatics; information technologies in education; cybersecurity and cyber-defense; electromagnetics, sensors and antennas for security.
Download or read book ICT Innovations 2014 written by Ana Madevska Bogdanova and published by Springer. This book was released on 2014-08-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is a common ground, a starting point for each ICT system. Data needs processing, use of different technologies and state-of-the-art methods in order to obtain new knowledge, to develop new useful applications that not only ease, but also increase the quality of life. These applications use the exploration of Big Data, High throughput data, Data Warehouse, Data Mining, Bioinformatics, Robotics, with data coming from social media, sensors, scientific applications, surveillance, video and image archives, internet texts and documents, internet search indexing, medical records, business transactions, web logs, etc. Information and communication technologies have become the asset in everyday life enabling increased level of communication, processing and information exchange. This book offers a collection of selected papers presented at the Sixth International Conference on ICT Innovations held in September 2014, in Ohrid, Macedonia, with main topic World of data. The conference gathered academics, professionals and practitioners in developing solutions and systems in the industrial and business arena, especially innovative commercial implementations, novel applications of technology, and experience in applying recent ICT research advances to practical solutions.
Download or read book Active Portfolio Management A Quantitative Approach for Producing Superior Returns and Selecting Superior Returns and Controlling Risk written by Richard C. Grinold and published by McGraw Hill Professional. This book was released on 1999-11-16 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This new edition of Active Portfolio Management continues the standard of excellence established in the first edition, with new and clear insights to help investment professionals." -William E. Jacques, Partner and Chief Investment Officer, Martingale Asset Management. "Active Portfolio Management offers investors an opportunity to better understand the balance between manager skill and portfolio risk. Both fundamental and quantitative investment managers will benefit from studying this updated edition by Grinold and Kahn." -Scott Stewart, Portfolio Manager, Fidelity Select Equity ® Discipline Co-Manager, Fidelity Freedom ® Funds. "This Second edition will not remain on the shelf, but will be continually referenced by both novice and expert. There is a substantial expansion in both depth and breadth on the original. It clearly and concisely explains all aspects of the foundations and the latest thinking in active portfolio management." -Eric N. Remole, Managing Director, Head of Global Structured Equity, Credit Suisse Asset Management. Mathematically rigorous and meticulously organized, Active Portfolio Management broke new ground when it first became available to investment managers in 1994. By outlining an innovative process to uncover raw signals of asset returns, develop them into refined forecasts, then use those forecasts to construct portfolios of exceptional return and minimal risk, i.e., portfolios that consistently beat the market, this hallmark book helped thousands of investment managers. Active Portfolio Management, Second Edition, now sets the bar even higher. Like its predecessor, this volume details how to apply economics, econometrics, and operations research to solving practical investment problems, and uncovering superior profit opportunities. It outlines an active management framework that begins with a benchmark portfolio, then defines exceptional returns as they relate to that benchmark. Beyond the comprehensive treatment of the active management process covered previously, this new edition expands to cover asset allocation, long/short investing, information horizons, and other topics relevant today. It revisits a number of discussions from the first edition, shedding new light on some of today's most pressing issues, including risk, dispersion, market impact, and performance analysis, while providing empirical evidence where appropriate. The result is an updated, comprehensive set of strategic concepts and rules of thumb for guiding the process of-and increasing the profits from-active investment management.
Download or read book Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Download or read book Machine Learning and Metaheuristics Algorithms and Applications written by Sabu M. Thampi and published by Springer Nature. This book was released on 2021-02-05 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2020, held in Chennai, India, in October 2020. Due to the COVID-19 pandemic the conference was held online. The 12 full papers and 7 short papers presented in this volume were thoroughly reviewed and selected from 40 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.
Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Download or read book Proceedings of International Conference on Intelligent Computing Information and Control Systems written by A. Pasumpon Pandian and published by Springer Nature. This book was released on 2021-01-24 with total page 972 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of papers presented at the International Conference on Intelligent Computing, Information and Control Systems (ICICCS 2020). It encompasses various research works that help to develop and advance the next-generation intelligent computing and control systems. The book integrates the computational intelligence and intelligent control systems to provide a powerful methodology for a wide range of data analytics issues in industries and societal applications. The book also presents the new algorithms and methodologies for promoting advances in common intelligent computing and control methodologies including evolutionary computation, artificial life, virtual infrastructures, fuzzy logic, artificial immune systems, neural networks and various neuro-hybrid methodologies. This book is pragmatic for researchers, academicians and students dealing with mathematically intransigent problems.