EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Empirical Asset Pricing

Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.

Book On Market Timing and Investment Performance Part II  Statistical Procedures for Evaluating Forecasting Skills

Download or read book On Market Timing and Investment Performance Part II Statistical Procedures for Evaluating Forecasting Skills written by Roy Henriksson and published by . This book was released on 2023-07-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Machine Learning for Asset Management

Download or read book Machine Learning for Asset Management written by Emmanuel Jurczenko and published by John Wiley & Sons. This book was released on 2020-10-06 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management.

Book Machine Learning for Algorithmic Trading

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Book Advances in Financial Machine Learning

Download or read book Advances in Financial Machine Learning written by Marcos Lopez de Prado and published by John Wiley & Sons. This book was released on 2018-01-23 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Book Introduction to Artificial Neural Systems

Download or read book Introduction to Artificial Neural Systems written by Jacek M. Zurada and published by Brooks/Cole. This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Financial Econometrics

Download or read book Handbook of Financial Econometrics written by Yacine Ait-Sahalia and published by Elsevier. This book was released on 2009-10-19 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections

Book The Nature of Statistical Learning Theory

Download or read book The Nature of Statistical Learning Theory written by Vladimir Vapnik and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.

Book Empirical Asset Pricing

Download or read book Empirical Asset Pricing written by Turan G. Bali and published by John Wiley & Sons. This book was released on 2016-02-26 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Bali, Engle, and Murray have produced a highly accessible introduction to the techniques and evidence of modern empirical asset pricing. This book should be read and absorbed by every serious student of the field, academic and professional.” Eugene Fama, Robert R. McCormick Distinguished Service Professor of Finance, University of Chicago and 2013 Nobel Laureate in Economic Sciences “The empirical analysis of the cross-section of stock returns is a monumental achievement of half a century of finance research. Both the established facts and the methods used to discover them have subtle complexities that can mislead casual observers and novice researchers. Bali, Engle, and Murray’s clear and careful guide to these issues provides a firm foundation for future discoveries.” John Campbell, Morton L. and Carole S. Olshan Professor of Economics, Harvard University “Bali, Engle, and Murray provide clear and accessible descriptions of many of the most important empirical techniques and results in asset pricing.” Kenneth R. French, Roth Family Distinguished Professor of Finance, Tuck School of Business, Dartmouth College “This exciting new book presents a thorough review of what we know about the cross-section of stock returns. Given its comprehensive nature, systematic approach, and easy-to-understand language, the book is a valuable resource for any introductory PhD class in empirical asset pricing.” Lubos Pastor, Charles P. McQuaid Professor of Finance, University of Chicago Empirical Asset Pricing: The Cross Section of Stock Returns is a comprehensive overview of the most important findings of empirical asset pricing research. The book begins with thorough expositions of the most prevalent econometric techniques with in-depth discussions of the implementation and interpretation of results illustrated through detailed examples. The second half of the book applies these techniques to demonstrate the most salient patterns observed in stock returns. The phenomena documented form the basis for a range of investment strategies as well as the foundations of contemporary empirical asset pricing research. Empirical Asset Pricing: The Cross Section of Stock Returns also includes: Discussions on the driving forces behind the patterns observed in the stock market An extensive set of results that serve as a reference for practitioners and academics alike Numerous references to both contemporary and foundational research articles Empirical Asset Pricing: The Cross Section of Stock Returns is an ideal textbook for graduate-level courses in asset pricing and portfolio management. The book is also an indispensable reference for researchers and practitioners in finance and economics. Turan G. Bali, PhD, is the Robert Parker Chair Professor of Finance in the McDonough School of Business at Georgetown University. The recipient of the 2014 Jack Treynor prize, he is the coauthor of Mathematical Methods for Finance: Tools for Asset and Risk Management, also published by Wiley. Robert F. Engle, PhD, is the Michael Armellino Professor of Finance in the Stern School of Business at New York University. He is the 2003 Nobel Laureate in Economic Sciences, Director of the New York University Stern Volatility Institute, and co-founding President of the Society for Financial Econometrics. Scott Murray, PhD, is an Assistant Professor in the Department of Finance in the J. Mack Robinson College of Business at Georgia State University. He is the recipient of the 2014 Jack Treynor prize.

Book How can I get started Investing in the Stock Market

Download or read book How can I get started Investing in the Stock Market written by Lokesh Badolia and published by Educreation Publishing. This book was released on 2016-10-27 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market.

Book Machine Learning in Asset Pricing

Download or read book Machine Learning in Asset Pricing written by Stefan Nagel and published by Princeton University Press. This book was released on 2021-05-11 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.

Book Implementing Machine Learning for Finance

Download or read book Implementing Machine Learning for Finance written by Tshepo Chris Nokeri and published by Apress. This book was released on 2021-05-27 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bring together machine learning (ML) and deep learning (DL) in financial trading, with an emphasis on investment management. This book explains systematic approaches to investment portfolio management, risk analysis, and performance analysis, including predictive analytics using data science procedures. The book introduces pattern recognition and future price forecasting that exerts effects on time series analysis models, such as the Autoregressive Integrated Moving Average (ARIMA) model, Seasonal ARIMA (SARIMA) model, and Additive model, and it covers the Least Squares model and the Long Short-Term Memory (LSTM) model. It presents hidden pattern recognition and market regime prediction applying the Gaussian Hidden Markov Model. The book covers the practical application of the K-Means model in stock clustering. It establishes the practical application of the Variance-Covariance method and Simulation method (using Monte Carlo Simulation) for value at risk estimation. It also includes market direction classification using both the Logistic classifier and the Multilayer Perceptron classifier. Finally, the book presents performance and risk analysis for investment portfolios. By the end of this book, you should be able to explain how algorithmic trading works and its practical application in the real world, and know how to apply supervised and unsupervised ML and DL models to bolster investment decision making and implement and optimize investment strategies and systems. What You Will Learn Understand the fundamentals of the financial market and algorithmic trading, as well as supervised and unsupervised learning models that are appropriate for systematic investment portfolio management Know the concepts of feature engineering, data visualization, and hyperparameter optimization Design, build, and test supervised and unsupervised ML and DL models Discover seasonality, trends, and market regimes, simulating a change in the market and investment strategy problems and predicting market direction and prices Structure and optimize an investment portfolio with preeminent asset classes and measure the underlying risk Who This Book Is For Beginning and intermediate data scientists, machine learning engineers, business executives, and finance professionals (such as investment analysts and traders)

Book Big Data and Machine Learning in Quantitative Investment

Download or read book Big Data and Machine Learning in Quantitative Investment written by Tony Guida and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.

Book Multi Valued and Universal Binary Neurons

Download or read book Multi Valued and Universal Binary Neurons written by Igor Aizenberg and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-Valued and Universal Binary Neurons deals with two new types of neurons: multi-valued neurons and universal binary neurons. These neurons are based on complex number arithmetic and are hence much more powerful than the typical neurons used in artificial neural networks. Therefore, networks with such neurons exhibit a broad functionality. They can not only realise threshold input/output maps but can also implement any arbitrary Boolean function. Two learning methods are presented whereby these networks can be trained easily. The broad applicability of these networks is proven by several case studies in different fields of application: image processing, edge detection, image enhancement, super resolution, pattern recognition, face recognition, and prediction. The book is hence partitioned into three almost equally sized parts: a mathematical study of the unique features of these new neurons, learning of networks of such neurons, and application of such neural networks. Most of this work was developed by the first two authors over a period of more than 10 years and was only available in the Russian literature. With this book we present the first comprehensive treatment of this important class of neural networks in the open Western literature. Multi-Valued and Universal Binary Neurons is intended for anyone with a scholarly interest in neural network theory, applications and learning. It will also be of interest to researchers and practitioners in the fields of image processing, pattern recognition, control and robotics.

Book Neural Networks

    Book Details:
  • Author : Raul Rojas
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 3642610684
  • Pages : 511 pages

Download or read book Neural Networks written by Raul Rojas and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.

Book ICDSMLA 2019

Download or read book ICDSMLA 2019 written by Amit Kumar and published by Springer Nature. This book was released on 2020-05-19 with total page 2010 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected high-impact articles from the 1st International Conference on Data Science, Machine Learning & Applications 2019. It highlights the latest developments in the areas of Artificial Intelligence, Machine Learning, Soft Computing, Human–Computer Interaction and various data science & machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.

Book Extreme Correlation of International Equity Markets

Download or read book Extreme Correlation of International Equity Markets written by François M. Longin and published by . This book was released on 2000 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: