EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Deep Learning for Physical Scientists

Download or read book Deep Learning for Physical Scientists written by Edward O. Pyzer-Knapp and published by John Wiley & Sons. This book was released on 2021-09-20 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome. Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader. From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy: A thorough introduction to the basic classification and regression with perceptrons An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training An examination of multi-layer perceptrons for learning from descriptors and de-noising data Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images A treatment of Bayesian optimization for tuning deep learning architectures Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. Perfect for academic and industrial research professionals in the physical sciences, em style="font-family: Calibri, sans-serif; font-size: 11pt;"Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: •Basic classification and regression with perceptrons •Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training •Multi-Layer Perceptrons for learning from descriptors, and de-noising data •Recurrent neural networks for learning from sequences •Convolutional neural networks for learning from images •Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource. Market Description This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: • Basic classification and regression with perceptrons • Training algorithms, such as back propagation and stochastic gradient descent and the parallelization of training • Multi-Layer Perceptrons for learning from descriptors, and de-noising data • Recurrent neural networks for learning from sequences • Convolutional neural networks for learning from images • Bayesian optimization for tuning deep learning architectures Each of these areas has direct application to physical science research, and by the end of the book, the reader should feel comfortable enough to select the methodology which is best for their situation, and be able to implement and interpret outcome of the deep learning model. The book is designed to teach researchers to think in new ways, providing them with new avenues to attack problems, and avoid roadblocks within their research. This is achieved through the inclusion of case-study like problems at the end of each chapter, which will give the reader a chance to practice what they have just learnt in a close-to-real-world setting, with example ‘solutions’ provided through an online resource.

Book Handbook On Big Data And Machine Learning In The Physical Sciences  In 2 Volumes

Download or read book Handbook On Big Data And Machine Learning In The Physical Sciences In 2 Volumes written by and published by World Scientific. This book was released on 2020-03-10 with total page 1001 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.

Book Machine Learning for the Physical Sciences

Download or read book Machine Learning for the Physical Sciences written by Carlo Requião da Cunha and published by CRC Press. This book was released on 2023-12-05 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is an exciting topic with a myriad of applications. However, most textbooks are targeted towards computer science students. This, however, creates a complication for scientists across the physical sciences that also want to understand the main concepts of machine learning and look ahead to applica- tions and advancements in their fields. This textbook bridges this gap, providing an introduction to the mathematical foundations for the main algorithms used in machine learning for those from the physical sciences, without a formal background in computer science. It demon- strates how machine learning can be used to solve problems in physics and engineering, targeting senior undergraduate and graduate students in physics and electrical engineering, alongside advanced researchers. Key Features: Includes detailed algorithms Supplemented by codes in Julia: a high-performing language and one that is easy to read for those in the natural sciences All algorithms are presented with a good mathematical background

Book Physics of Data Science and Machine Learning

Download or read book Physics of Data Science and Machine Learning written by Ijaz A. Rauf and published by CRC Press. This book was released on 2021-11-28 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Data Science and Machine Learning links fundamental concepts of physics to data science, machine learning, and artificial intelligence for physicists looking to integrate these techniques into their work. This book is written explicitly for physicists, marrying quantum and statistical mechanics with modern data mining, data science, and machine learning. It also explains how to integrate these techniques into the design of experiments, while exploring neural networks and machine learning, building on fundamental concepts of statistical and quantum mechanics. This book is a self-learning tool for physicists looking to learn how to utilize data science and machine learning in their research. It will also be of interest to computer scientists and applied mathematicians, alongside graduate students looking to understand the basic concepts and foundations of data science, machine learning, and artificial intelligence. Although specifically written for physicists, it will also help provide non-physicists with an opportunity to understand the fundamental concepts from a physics perspective to aid in the development of new and innovative machine learning and artificial intelligence tools. Key Features: Introduces the design of experiments and digital twin concepts in simple lay terms for physicists to understand, adopt, and adapt. Free from endless derivations; instead, equations are presented and it is explained strategically why it is imperative to use them and how they will help in the task at hand. Illustrations and simple explanations help readers visualize and absorb the difficult-to-understand concepts. Ijaz A. Rauf is an adjunct professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an associate researcher at Ryerson University, Toronto, Canada and president of the Eminent-Tech Corporation, Bradford, ON, Canada.

Book Deep Learning and Physics

Download or read book Deep Learning and Physics written by Akinori Tanaka and published by Springer Nature. This book was released on 2021-03-24 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.

Book Data Driven Science and Engineering

Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Book Handbook on Big Data and Machine Learning in the Physical Sciences

Download or read book Handbook on Big Data and Machine Learning in the Physical Sciences written by Surya Kalidindi and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics. Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument - driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems"--

Book Deep Learning in Science

    Book Details:
  • Author : Pierre Baldi
  • Publisher : Cambridge University Press
  • Release : 2021-07
  • ISBN : 1108845355
  • Pages : 387 pages

Download or read book Deep Learning in Science written by Pierre Baldi and published by Cambridge University Press. This book was released on 2021-07 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rigorous treatment of the theory of deep learning from first principles, with applications to beautiful problems in the natural sciences.

Book Deep Learning For Physics Research

Download or read book Deep Learning For Physics Research written by Martin Erdmann and published by World Scientific. This book was released on 2021-06-25 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A core principle of physics is knowledge gained from data. Thus, deep learning has instantly entered physics and may become a new paradigm in basic and applied research.This textbook addresses physics students and physicists who want to understand what deep learning actually means, and what is the potential for their own scientific projects. Being familiar with linear algebra and parameter optimization is sufficient to jump-start deep learning. Adopting a pragmatic approach, basic and advanced applications in physics research are described. Also offered are simple hands-on exercises for implementing deep networks for which python code and training data can be downloaded.

Book Machine Learning Meets Quantum Physics

Download or read book Machine Learning Meets Quantum Physics written by Kristof T. Schütt and published by Springer Nature. This book was released on 2020-06-03 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.

Book Machine Learning for Physics and Astronomy

Download or read book Machine Learning for Physics and Astronomy written by Viviana Acquaviva and published by Princeton University Press. This book was released on 2023-08-15 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on introduction to machine learning and its applications to the physical sciences As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider. Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given task Each chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key concepts Includes a wealth of review questions and quizzes Ideal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematics Accessible to self-learners with a basic knowledge of linear algebra and calculus Slides and assessment questions (available only to instructors)

Book AI for Physics

    Book Details:
  • Author : Volker Knecht
  • Publisher : CRC Press
  • Release : 2022-08-29
  • ISBN : 1000643832
  • Pages : 149 pages

Download or read book AI for Physics written by Volker Knecht and published by CRC Press. This book was released on 2022-08-29 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in accessible language without mathematical formulas, this short book provides an overview of the wide and varied applications of artificial intelligence (AI) across the spectrum of physical sciences. Focusing in particular on AI's ability to extract patterns from data, known as machine learning (ML), the book includes a chapter on important machine learning algorithms and their respective applications in physics. It then explores the use of ML across a number of important sub-fields in more detail, ranging from particle, molecular and condensed matter physics, to astrophysics, cosmology and the theory of everything. The book covers such applications as the search for new particles and the detection of gravitational waves from the merging of black holes, and concludes by discussing what the future may hold.

Book Machine Learning for Planetary Science

Download or read book Machine Learning for Planetary Science written by Joern Helbert and published by Elsevier. This book was released on 2022-03-22 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning for Planetary Science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation. - Includes links to a code repository for sharing codes and examples, some of which include executable Jupyter notebook files that can serve as tutorials - Presents methods applicable to everyday problems faced by planetary scientists and sufficient for analyzing large datasets - Serves as a guide for selecting the right method and tools for applying machine learning to particular analysis problems - Utilizes case studies to illustrate how machine learning methods can be employed in practice

Book Machine Learning in Chemistry

Download or read book Machine Learning in Chemistry written by Hugh M. Cartwright and published by Royal Society of Chemistry. This book was released on 2020-07-15 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.

Book Machine Learning with Neural Networks

Download or read book Machine Learning with Neural Networks written by Bernhard Mehlig and published by Cambridge University Press. This book was released on 2021-10-28 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.

Book Deep Learning Applications for Cyber Physical Systems

Download or read book Deep Learning Applications for Cyber Physical Systems written by Mundada, Monica R. and published by IGI Global. This book was released on 2021-12-17 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data generates around us constantly from daily business, custom use, engineering, and science activities. Sensory data is collected from the internet of things (IoT) and cyber-physical systems (CPS). Merely storing such a massive amount of data is meaningless, as the key point is to identify, locate, and extract valuable knowledge from big data to forecast and support services. Such extracted valuable knowledge is usually referred to as smart data. It is vital to providing suitable decisions in business, science, and engineering applications. Deep Learning Applications for Cyber-Physical Systems provides researchers a platform to present state-of-the-art innovations, research, and designs while implementing methodological and algorithmic solutions to data processing problems and designing and analyzing evolving trends in health informatics and computer-aided diagnosis in deep learning techniques in context with cyber physical systems. Covering topics such as smart medical systems, intrusion detection systems, and predictive analytics, this text is essential for computer scientists, engineers, practitioners, researchers, students, and academicians, especially those interested in the areas of internet of things, machine learning, deep learning, and cyber-physical systems.

Book Probability and Statistics in the Physical Sciences

Download or read book Probability and Statistics in the Physical Sciences written by Byron P. Roe and published by Springer Nature. This book was released on 2020-09-26 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, now in its third edition, offers a practical guide to the use of probability and statistics in experimental physics that is of value for both advanced undergraduates and graduate students. Focusing on applications and theorems and techniques actually used in experimental research, it includes worked problems with solutions, as well as homework exercises to aid understanding. Suitable for readers with no prior knowledge of statistical techniques, the book comprehensively discusses the topic and features a number of interesting and amusing applications that are often neglected. Providing an introduction to neural net techniques that encompasses deep learning, adversarial neural networks, and boosted decision trees, this new edition includes updated chapters with, for example, additions relating to generating and characteristic functions, Bayes’ theorem, the Feldman-Cousins method, Lagrange multipliers for constraints, estimation of likelihood ratios, and unfolding problems.