Download or read book Machine Learning for Streaming Data with Python written by Joos Korstanje and published by Packt Publishing Ltd. This book was released on 2022-07-15 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply machine learning to streaming data with the help of practical examples, and deal with challenges that surround streaming Key Features • Work on streaming use cases that are not taught in most data science courses • Gain experience with state-of-the-art tools for streaming data • Mitigate various challenges while handling streaming data Book Description Streaming data is the new top technology to watch out for in the field of data science and machine learning. As business needs become more demanding, many use cases require real-time analysis as well as real-time machine learning. This book will help you to get up to speed with data analytics for streaming data and focus strongly on adapting machine learning and other analytics to the case of streaming data. You will first learn about the architecture for streaming and real-time machine learning. Next, you will look at the state-of-the-art frameworks for streaming data like River. Later chapters will focus on various industrial use cases for streaming data like Online Anomaly Detection and others. As you progress, you will discover various challenges and learn how to mitigate them. In addition to this, you will learn best practices that will help you use streaming data to generate real-time insights. By the end of this book, you will have gained the confidence you need to stream data in your machine learning models. What you will learn • Understand the challenges and advantages of working with streaming data • Develop real-time insights from streaming data • Understand the implementation of streaming data with various use cases to boost your knowledge • Develop a PCA alternative that can work on real-time data • Explore best practices for handling streaming data that you absolutely need to remember • Develop an API for real-time machine learning inference Who this book is for This book is for data scientists and machine learning engineers who have a background in machine learning, are practice and technology-oriented, and want to learn how to apply machine learning to streaming data through practical examples with modern technologies. Although an understanding of basic Python and machine learning concepts is a must, no prior knowledge of streaming is required.
Download or read book Practical Machine Learning for Streaming Data with Python written by Sayan Putatunda and published by Apress. This book was released on 2021-04-09 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow. Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more. What You'll Learn Understand machine learning with streaming data concepts Review incremental and online learning Develop models for detecting concept drift Explore techniques for classification, regression, and ensemble learning in streaming data contexts Apply best practices for debugging and validating machine learning models in streaming data context Get introduced to other open-source frameworks for handling streaming data. Who This Book Is For Machine learning engineers and data science professionals
Download or read book Machine Learning for Data Streams written by Albert Bifet and published by MIT Press. This book was released on 2018-03-16 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.
Download or read book Python for Algorithmic Trading written by Yves Hilpisch and published by O'Reilly Media. This book was released on 2020-11-12 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
Download or read book Transactional Machine Learning with Data Streams and AutoML written by Sebastian Maurice and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand how to apply auto machine learning to data streams and create transactional machine learning (TML) solutions that are frictionless (require minimal to no human intervention) and elastic (machine learning solutions that can scale up or down by controlling the number of data streams, algorithms, and users of the insights). This book will strengthen your knowledge of the inner workings of TML solutions using data streams with auto machine learning integrated with Apache Kafka. Transactional Machine Learning with Data Streams and AutoML introduces the industry challenges with applying machine learning to data streams. You will learn the framework that will help you in choosing business problems that are best suited for TML. You will also see how to measure the business value of TML solutions. You will then learn the technical components of TML solutions, including the reference and technical architecture of a TML solution. This book also presents a TML solution template that will make it easy for you to quickly start building your own TML solutions. Specifically, you are given access to a TML Python library and integration technologies for download. You will also learn how TML will evolve in the future, and the growing need by organizations for deeper insights from data streams. By the end of the book, you will have a solid understanding of TML. You will know how to build TML solutions with all the necessary details, and all the resources at your fingertips. You will: Discover transactional machine learning Measure the business value of TML Choose TML use cases Design technical architecture of TML solutions with Apache Kafka Work with the technologies used to build TML solutions Build transactional machine learning solutions with hands-on code together with Apache Kafka in the cloud.
Download or read book Practical Machine Learning for Streaming Data with Python written by Sayan Putatunda and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow. Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more. You will: Understand machine learning with streaming data concepts Review incremental and online learning Develop models for detecting concept drift Explore techniques for classification, regression, and ensemble learning in streaming data contexts Apply best practices for debugging and validating machine learning models in streaming data context Get introduced to other open-source frameworks for handling streaming data.
Download or read book Hands On Data Science and Python Machine Learning written by Frank Kane and published by Packt Publishing Ltd. This book was released on 2017-07-31 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.
Download or read book Visualizing Streaming Data written by Anthony Aragues and published by "O'Reilly Media, Inc.". This book was released on 2018-06-01 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: While tools for analyzing streaming and real-time data are gaining adoption, the ability to visualize these data types has yet to catch up. Dashboards are good at conveying daily or weekly data trends at a glance, though capturing snapshots when data is transforming from moment to moment is more difficult—but not impossible. With this practical guide, application designers, data scientists, and system administrators will explore ways to create visualizations that bring context and a sense of time to streaming text data. Author Anthony Aragues guides you through the concepts and tools you need to build visualizations for analyzing data as it arrives. Determine your company’s goals for visualizing streaming data Identify key data sources and learn how to stream them Learn practical methods for processing streaming data Build a client application for interacting with events, logs, and records Explore common components for visualizing streaming data Consider analysis concepts for developing your visualization Define the dashboard’s layout, flow direction, and component movement Improve visualization quality and productivity through collaboration Explore use cases including security, IoT devices, and application data
Download or read book Data Science on AWS written by Chris Fregly and published by "O'Reilly Media, Inc.". This book was released on 2021-04-07 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
Download or read book Frank Kane s Taming Big Data with Apache Spark and Python written by Frank Kane and published by Packt Publishing Ltd. This book was released on 2017-06-30 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Frank Kane's hands-on Spark training course, based on his bestselling Taming Big Data with Apache Spark and Python video, now available in a book. Understand and analyze large data sets using Spark on a single system or on a cluster. About This Book Understand how Spark can be distributed across computing clusters Develop and run Spark jobs efficiently using Python A hands-on tutorial by Frank Kane with over 15 real-world examples teaching you Big Data processing with Spark Who This Book Is For If you are a data scientist or data analyst who wants to learn Big Data processing using Apache Spark and Python, this book is for you. If you have some programming experience in Python, and want to learn how to process large amounts of data using Apache Spark, Frank Kane's Taming Big Data with Apache Spark and Python will also help you. What You Will Learn Find out how you can identify Big Data problems as Spark problems Install and run Apache Spark on your computer or on a cluster Analyze large data sets across many CPUs using Spark's Resilient Distributed Datasets Implement machine learning on Spark using the MLlib library Process continuous streams of data in real time using the Spark streaming module Perform complex network analysis using Spark's GraphX library Use Amazon's Elastic MapReduce service to run your Spark jobs on a cluster In Detail Frank Kane's Taming Big Data with Apache Spark and Python is your companion to learning Apache Spark in a hands-on manner. Frank will start you off by teaching you how to set up Spark on a single system or on a cluster, and you'll soon move on to analyzing large data sets using Spark RDD, and developing and running effective Spark jobs quickly using Python. Apache Spark has emerged as the next big thing in the Big Data domain – quickly rising from an ascending technology to an established superstar in just a matter of years. Spark allows you to quickly extract actionable insights from large amounts of data, on a real-time basis, making it an essential tool in many modern businesses. Frank has packed this book with over 15 interactive, fun-filled examples relevant to the real world, and he will empower you to understand the Spark ecosystem and implement production-grade real-time Spark projects with ease. Style and approach Frank Kane's Taming Big Data with Apache Spark and Python is a hands-on tutorial with over 15 real-world examples carefully explained by Frank in a step-by-step manner. The examples vary in complexity, and you can move through them at your own pace.
Download or read book Real Time Analytics written by Byron Ellis and published by John Wiley & Sons. This book was released on 2014-06-23 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.
Download or read book Introducing Data Science written by Davy Cielen and published by Simon and Schuster. This book was released on 2016-05-02 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user
Download or read book Real World Machine Learning written by Henrik Brink and published by Simon and Schuster. This book was released on 2016-09-15 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. Without overdosing you on academic theory and complex mathematics, it introduces the day-to-day practice of machine learning, preparing you to successfully build and deploy powerful ML systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning systems help you find valuable insights and patterns in data, which you'd never recognize with traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior, and make fact-based recommendations. It's a hot and growing field, and up-to-speed ML developers are in demand. About the Book Real-World Machine Learning will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you'll build skills in data acquisition and modeling, classification, and regression. You'll also explore the most important tasks like model validation, optimization, scalability, and real-time streaming. When you're done, you'll be ready to successfully build, deploy, and maintain your own powerful ML systems. What's Inside Predicting future behavior Performance evaluation and optimization Analyzing sentiment and making recommendations About the Reader No prior machine learning experience assumed. Readers should know Python. About the Authors Henrik Brink, Joseph Richards and Mark Fetherolf are experienced data scientists engaged in the daily practice of machine learning. Table of Contents PART 1: THE MACHINE-LEARNING WORKFLOW What is machine learning? Real-world data Modeling and prediction Model evaluation and optimization Basic feature engineering PART 2: PRACTICAL APPLICATION Example: NYC taxi data Advanced feature engineering Advanced NLP example: movie review sentiment Scaling machine-learning workflows Example: digital display advertising
Download or read book Applied Text Analysis with Python written by Benjamin Bengfort and published by "O'Reilly Media, Inc.". This book was released on 2018-06-11 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations Perform document classification and topic modeling Steer the model selection process with visual diagnostics Extract key phrases, named entities, and graph structures to reason about data in text Build a dialog framework to enable chatbots and language-driven interaction Use Spark to scale processing power and neural networks to scale model complexity
Download or read book Data Analytics with Spark Using Python written by Jeffrey Aven and published by Addison-Wesley Professional. This book was released on 2018-06-18 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solve Data Analytics Problems with Spark, PySpark, and Related Open Source Tools Spark is at the heart of today’s Big Data revolution, helping data professionals supercharge efficiency and performance in a wide range of data processing and analytics tasks. In this guide, Big Data expert Jeffrey Aven covers all you need to know to leverage Spark, together with its extensions, subprojects, and wider ecosystem. Aven combines a language-agnostic introduction to foundational Spark concepts with extensive programming examples utilizing the popular and intuitive PySpark development environment. This guide’s focus on Python makes it widely accessible to large audiences of data professionals, analysts, and developers—even those with little Hadoop or Spark experience. Aven’s broad coverage ranges from basic to advanced Spark programming, and Spark SQL to machine learning. You’ll learn how to efficiently manage all forms of data with Spark: streaming, structured, semi-structured, and unstructured. Throughout, concise topic overviews quickly get you up to speed, and extensive hands-on exercises prepare you to solve real problems. Coverage includes: • Understand Spark’s evolving role in the Big Data and Hadoop ecosystems • Create Spark clusters using various deployment modes • Control and optimize the operation of Spark clusters and applications • Master Spark Core RDD API programming techniques • Extend, accelerate, and optimize Spark routines with advanced API platform constructs, including shared variables, RDD storage, and partitioning • Efficiently integrate Spark with both SQL and nonrelational data stores • Perform stream processing and messaging with Spark Streaming and Apache Kafka • Implement predictive modeling with SparkR and Spark MLlib
Download or read book Data Science in Production written by Ben Weber and published by . This book was released on 2020 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub.
Download or read book Building Big Data Pipelines with Apache Beam written by Jan Lukavsky and published by Packt Publishing Ltd. This book was released on 2022-01-21 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement, run, operate, and test data processing pipelines using Apache Beam Key FeaturesUnderstand how to improve usability and productivity when implementing Beam pipelinesLearn how to use stateful processing to implement complex use cases using Apache BeamImplement, test, and run Apache Beam pipelines with the help of expert tips and techniquesBook Description Apache Beam is an open source unified programming model for implementing and executing data processing pipelines, including Extract, Transform, and Load (ETL), batch, and stream processing. This book will help you to confidently build data processing pipelines with Apache Beam. You'll start with an overview of Apache Beam and understand how to use it to implement basic pipelines. You'll also learn how to test and run the pipelines efficiently. As you progress, you'll explore how to structure your code for reusability and also use various Domain Specific Languages (DSLs). Later chapters will show you how to use schemas and query your data using (streaming) SQL. Finally, you'll understand advanced Apache Beam concepts, such as implementing your own I/O connectors. By the end of this book, you'll have gained a deep understanding of the Apache Beam model and be able to apply it to solve problems. What you will learnUnderstand the core concepts and architecture of Apache BeamImplement stateless and stateful data processing pipelinesUse state and timers for processing real-time event processingStructure your code for reusabilityUse streaming SQL to process real-time data for increasing productivity and data accessibilityRun a pipeline using a portable runner and implement data processing using the Apache Beam Python SDKImplement Apache Beam I/O connectors using the Splittable DoFn APIWho this book is for This book is for data engineers, data scientists, and data analysts who want to learn how Apache Beam works. Intermediate-level knowledge of the Java programming language is assumed.