EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Machine Learning in Signal Processing

Download or read book Machine Learning in Signal Processing written by Sudeep Tanwar and published by CRC Press. This book was released on 2021-12-09 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML). ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML. The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML. FEATURES Focuses on addressing the missing connection between signal processing and ML Provides a one-stop guide reference for readers Oriented toward material and flow with regards to general introduction and technical aspects Comprehensively elaborates on the material with examples and diagrams This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.

Book Machine Intelligence and Signal Analysis

Download or read book Machine Intelligence and Signal Analysis written by M. Tanveer and published by Springer. This book was released on 2018-08-07 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.

Book Signal Processing and Machine Learning Theory

Download or read book Signal Processing and Machine Learning Theory written by Paulo S.R. Diniz and published by Elsevier. This book was released on 2023-07-10 with total page 1236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Signal Processing and Machine Learning Theory, authored by world-leading experts, reviews the principles, methods and techniques of essential and advanced signal processing theory. These theories and tools are the driving engines of many current and emerging research topics and technologies, such as machine learning, autonomous vehicles, the internet of things, future wireless communications, medical imaging, etc. - Provides quick tutorial reviews of important and emerging topics of research in signal processing-based tools - Presents core principles in signal processing theory and shows their applications - Discusses some emerging signal processing tools applied in machine learning methods - References content on core principles, technologies, algorithms and applications - Includes references to journal articles and other literature on which to build further, more specific, and detailed knowledge

Book Machine Intelligence and Signal Processing

Download or read book Machine Intelligence and Signal Processing written by Sonali Agarwal and published by Springer Nature. This book was released on 2020-02-25 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features selected high-quality research papers presented at the International Conference on Machine Intelligence and Signal Processing (MISP 2019), held at the Indian Institute of Technology, Allahabad, India, on September 7–10, 2019. The book covers the latest advances in the fields of machine learning, big data analytics, signal processing, computational learning theory, and their real-time applications. The topics covered include support vector machines (SVM) and variants like least-squares SVM (LS-SVM) and twin SVM (TWSVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. Further, it discusses the real-time challenges involved in processing big data and adapting the algorithms dynamically to improve the computational efficiency. Lastly, it describes recent developments in processing signals, for instance, signals generated from IoT devices, smart systems, speech, and videos and addresses biomedical signal processing: electrocardiogram (ECG) and electroencephalogram (EEG).

Book EEG Signal Processing and Machine Learning

Download or read book EEG Signal Processing and Machine Learning written by Saeid Sanei and published by John Wiley & Sons. This book was released on 2021-09-23 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: EEG Signal Processing and Machine Learning Explore cutting edge techniques at the forefront of electroencephalogram research and artificial intelligence from leading voices in the field The newly revised Second Edition of EEG Signal Processing and Machine Learning delivers an inclusive and thorough exploration of new techniques and outcomes in electroencephalogram (EEG) research in the areas of analysis, processing, and decision making about a variety of brain states, abnormalities, and disorders using advanced signal processing and machine learning techniques. The book content is substantially increased upon that of the first edition and, while it retains what made the first edition so popular, is composed of more than 50% new material. The distinguished authors have included new material on tensors for EEG analysis and sensor fusion, as well as new chapters on mental fatigue, sleep, seizure, neurodevelopmental diseases, BCI, and psychiatric abnormalities. In addition to including a comprehensive chapter on machine learning, machine learning applications have been added to almost all the chapters. Moreover, multimodal brain screening, such as EEG-fMRI, and brain connectivity have been included as two new chapters in this new edition. Readers will also benefit from the inclusion of: A thorough introduction to EEGs, including neural activities, action potentials, EEG generation, brain rhythms, and EEG recording and measurement An exploration of brain waves, including their generation, recording, and instrumentation, abnormal EEG patterns and the effects of ageing and mental disorders A treatment of mathematical models for normal and abnormal EEGs Discussions of the fundamentals of EEG signal processing, including statistical properties, linear and nonlinear systems, frequency domain approaches, tensor factorization, diffusion adaptive filtering, deep neural networks, and complex-valued signal processing Perfect for biomedical engineers, neuroscientists, neurophysiologists, psychiatrists, engineers, students and researchers in the above areas, the Second Edition of EEG Signal Processing and Machine Learning will also earn a place in the libraries of undergraduate and postgraduate students studying Biomedical Engineering, Neuroscience and Epileptology.

Book Signal Processing and Machine Learning for Biomedical Big Data

Download or read book Signal Processing and Machine Learning for Biomedical Big Data written by Ervin Sejdic and published by CRC Press. This book was released on 2018-07-04 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book’s material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.

Book Proceedings of the International e Conference on Intelligent Systems and Signal Processing

Download or read book Proceedings of the International e Conference on Intelligent Systems and Signal Processing written by Falgun Thakkar and published by Springer Nature. This book was released on 2021-08-13 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides insights into the Third International Conference on Intelligent Systems and Signal Processing (eISSP 2020) held By Electronics & Communication Engineering Department of G H Patel College of Engineering & Technology, Gujarat, India, during 28–30 December 2020. The book comprises contributions by the research scholars and academicians covering the topics in signal processing and communication engineering, applied electronics and emerging technologies, Internet of Things (IoT), robotics, machine learning, deep learning and artificial intelligence. The main emphasis of the book is on dissemination of information, experience and research results on the current topics of interest through in-depth discussions and contribution of researchers from all over world. The book is useful for research community, academicians, industrialists and postgraduate students across the globe.

Book Source Separation and Machine Learning

Download or read book Source Separation and Machine Learning written by Jen-Tzung Chien and published by Academic Press. This book was released on 2018-10-16 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation. - Emphasizes the modern model-based Blind Source Separation (BSS) which closely connects the latest research topics of BSS and Machine Learning - Includes coverage of Bayesian learning, sparse learning, online learning, discriminative learning and deep learning - Presents a number of case studies of model-based BSS (categorizing them into four modern models - ICA, NMF, NTF and DNN), using a variety of learning algorithms that provide solutions for the construction of BSS systems

Book Machine Learning and Data Mining in Pattern Recognition

Download or read book Machine Learning and Data Mining in Pattern Recognition written by Petra Perner and published by Springer Science & Business Media. This book was released on 2011-08-12 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 7th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2011, held in New York, NY, USA. The 44 revised full papers presented were carefully reviewed and selected from 170 submissions. The papers are organized in topical sections on classification and decision theory, theory of learning, clustering, application in medicine, webmining and information mining; and machine learning and image mining.

Book Digital Audio Signal Processing

Download or read book Digital Audio Signal Processing written by Udo Zölzer and published by John Wiley & Sons. This book was released on 2022-02-24 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digital Audio Signal Processing The fully revised new edition of the popular textbook, featuring additional MATLAB exercises and new algorithms for processing digital audio signals Digital Audio Signal Processing (DASP) techniques are used in a variety of applications, ranging from audio streaming and computer-generated music to real-time signal processing and virtual sound processing. Digital Audio Signal Processing provides clear and accessible coverage of the fundamental principles and practical applications of digital audio processing and coding. Throughout the book, the authors explain a wide range of basic audio processing techniques and highlight new directions for automatic tuning of different algorithms and discuss state- of-the-art DASP approaches. Now in its third edition, this popular guide is fully updated with the latest signal processing algorithms for audio processing. Entirely new chapters cover nonlinear processing, Machine Learning (ML) for audio applications, distortion, soft/hard clipping, overdrive, equalizers and delay effects, sampling and reconstruction, and more. Covers the fundamentals of quantization, filters, dynamic range control, room simulation, sampling rate conversion, and audio coding Describes DASP techniques, their theoretical foundations, and their practical applications Discusses modern studio technology, digital transmission systems, storage media, and home entertainment audio components Features a new introductory chapter and extensively revised content throughout Provides updated application examples and computer-based activities supported with MATLAB exercises and interactive JavaScript applets via an author-hosted companion website Balancing essential concepts and technological topics, Digital Audio Signal Processing, Third Edition remains the ideal textbook for advanced music technology and engineering students in audio signal processing courses. It is also an invaluable reference for audio engineers, hardware and software developers, and researchers in both academia and industry.

Book Big Data  IoT  and Machine Learning

Download or read book Big Data IoT and Machine Learning written by Rashmi Agrawal and published by CRC Press. This book was released on 2020-07-29 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea behind this book is to simplify the journey of aspiring readers and researchers to understand Big Data, IoT and Machine Learning. It also includes various real-time/offline applications and case studies in the fields of engineering, computer science, information security and cloud computing using modern tools. This book consists of two sections: Section I contains the topics related to Applications of Machine Learning, and Section II addresses issues about Big Data, the Cloud and the Internet of Things. This brings all the related technologies into a single source so that undergraduate and postgraduate students, researchers, academicians and people in industry can easily understand them. Features Addresses the complete data science technologies workflow Explores basic and high-level concepts and services as a manual for those in the industry and at the same time can help beginners to understand both basic and advanced aspects of machine learning Covers data processing and security solutions in IoT and Big Data applications Offers adaptive, robust, scalable and reliable applications to develop solutions for day-to-day problems Presents security issues and data migration techniques of NoSQL databases

Book Multimodal Pattern Recognition of Social Signals in Human Computer Interaction

Download or read book Multimodal Pattern Recognition of Social Signals in Human Computer Interaction written by Friedhelm Schwenker and published by Springer. This book was released on 2017-05-30 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-workshop proceedings of the Fourth IAPR TC9 Workshop on Pattern Recognition of Social Signals in Human-Computer-Interaction, MPRSS 2016, held in Cancun, Mexico, in December 2016. The 13 revised papers presented focus on pattern recognition, machine learning and information fusion methods with applications in social signal processing, including multimodal emotion recognition, user identification, and recognition of human activities.

Book Audio Source Separation and Speech Enhancement

Download or read book Audio Source Separation and Speech Enhancement written by Emmanuel Vincent and published by John Wiley & Sons. This book was released on 2018-07-24 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the technology behind hearing aids, Siri, and Echo Audio source separation and speech enhancement aim to extract one or more source signals of interest from an audio recording involving several sound sources. These technologies are among the most studied in audio signal processing today and bear a critical role in the success of hearing aids, hands-free phones, voice command and other noise-robust audio analysis systems, and music post-production software. Research on this topic has followed three convergent paths, starting with sensor array processing, computational auditory scene analysis, and machine learning based approaches such as independent component analysis, respectively. This book is the first one to provide a comprehensive overview by presenting the common foundations and the differences between these techniques in a unified setting. Key features: Consolidated perspective on audio source separation and speech enhancement. Both historical perspective and latest advances in the field, e.g. deep neural networks. Diverse disciplines: array processing, machine learning, and statistical signal processing. Covers the most important techniques for both single-channel and multichannel processing. This book provides both introductory and advanced material suitable for people with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers choose the right technology for their target application scenario. It will also be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, and musicology) willing to exploit audio source separation or speech enhancement as pre-processing tools for their own needs.

Book Machine Learning for Audio  Image and Video Analysis

Download or read book Machine Learning for Audio Image and Video Analysis written by Francesco Camastra and published by Springer. This book was released on 2015-07-21 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.

Book Machine Learning Methods with Noisy  Incomplete or Small Datasets

Download or read book Machine Learning Methods with Noisy Incomplete or Small Datasets written by Jordi Solé-Casals and published by MDPI. This book was released on 2021-08-17 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past years, businesses have had to tackle the issues caused by numerous forces from political, technological and societal environment. The changes in the global market and increasing uncertainty require us to focus on disruptive innovations and to investigate this phenomenon from different perspectives. The benefits of innovations are related to lower costs, improved efficiency, reduced risk, and better response to the customers’ needs due to new products, services or processes. On the other hand, new business models expose various risks, such as cyber risks, operational risks, regulatory risks, and others. Therefore, we believe that the entrepreneurial behavior and global mindset of decision-makers significantly contribute to the development of innovations, which benefit by closing the prevailing gap between developed and developing countries. Thus, this Special Issue contributes to closing the research gap in the literature by providing a platform for a scientific debate on innovation, internationalization and entrepreneurship, which would facilitate improving the resilience of businesses to future disruptions. Order Your Print Copy

Book Machine Learning

    Book Details:
  • Author : Abdelhamid Mellouk
  • Publisher : BoD – Books on Demand
  • Release : 2009-01-01
  • ISBN : 3902613564
  • Pages : 434 pages

Download or read book Machine Learning written by Abdelhamid Mellouk and published by BoD – Books on Demand. This book was released on 2009-01-01 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience.

Book Artificial Neural Networks and Machine Learning     ICANN 2018

Download or read book Artificial Neural Networks and Machine Learning ICANN 2018 written by Věra Kůrková and published by Springer. This book was released on 2018-10-02 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27th International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018. The papers presented in these volumes was carefully reviewed and selected from total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and Cybersecurity, ML and Social Media, ML in Engineering, Movement and Motion Detection, Multilayer Perceptrons and Kernel Networks, Natural Language, Object and Face Recognition, Recurrent Neural Networks and Reservoir Computing, Reinforcement Learning, Reservoir Computing, Self-Organizing Maps, Spiking Dynamics/Spiking ANN, Support Vector Machines, Swarm Intelligence and Decision-Making, Text Mining, Theoretical Neural Computation, Time Series and Forecasting, Training and Learning.