EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lyapunov Stability of Non Autonomous Dynamical Systems

Download or read book Lyapunov Stability of Non Autonomous Dynamical Systems written by David N. Cheban and published by Nova Publishers. This book was released on 2013 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: The foundation of the modern theory of stability was created in the works of A. Poincare and A.M. Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these works are concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering, which first gave the decisive impetus for the expansion and modern development of stability theory. This book contains a systematic exposition of the elements of the asymptotic stability theory of general non-autonomous dynamical systems in metric spaces with an emphasis on the application for different classes of non-autonomous evolution equations (Ordinary Differential Equations (ODEs), Difference Equations (DEs), Functional-Differential Equations (FDEs), Semi-Linear Parabolic Equations etc). The basic results of this book are contained in the courses of lectures which the author has given during many years for the students of the State University of Moldova. This book is intended for mathematicians (scientists and university professors) who are working in the field of stability theory of differential/difference equations, dynamical systems and control theory. It would also be of use for the graduate and post graduate student who is interested in the theory of dynamical systems and its applications. The reader needs no deep knowledge of special branches of mathematics, although it should be easier for readers who know the fundamentals concepts of the theory of metric spaces, qualitative theory of differential/difference equations and dynamical systems.

Book Stability of Nonautonomous Differential Equations

Download or read book Stability of Nonautonomous Differential Equations written by Luis Barreira and published by Springer. This book was released on 2007-09-26 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.

Book Nonautonomous Dynamical Systems

Download or read book Nonautonomous Dynamical Systems written by Peter E. Kloeden and published by American Mathematical Soc.. This book was released on 2011-08-17 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.

Book Lyapunov Stability of Non autonomous Dynamical Systems

Download or read book Lyapunov Stability of Non autonomous Dynamical Systems written by David N. Cheban and published by Nova Science Publishers. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The foundation of the modern theory of stability was created in the works of A Poincare and A M Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these works are concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering, which first gave the decisive impetus for the expansion and modern development of stability theory. This book contains a systematic exposition of the elements of the asymptotic stability theory of general non-autonomous dynamical systems in metric spaces with an emphasis on the application for different classes of non-autonomous evolution equations (Ordinary Differential Equations (ODEs), Difference Equations (DEs), Functional-Differential Equations (FDEs), Semi-Linear Parabolic Equations etc). The basic results of this book are contained in the courses of lectures which the author has given during many years for the students of the State University of Moldova.This book is intended for mathematicians (scientists and university professors) who are working in the field of stability theory of differential/difference equations, dynamical systems and control theory. It would also be of use for the graduate and post graduate student who is interested in the theory of dynamical systems and its applications. The reader needs no deep knowledge of special branches of mathematics, although it should be easier for readers who know the fundamentals concepts of the theory of metric spaces, qualitative theory of differential/difference equations and dynamical systems.

Book Dynamical Systems

    Book Details:
  • Author : Werner Krabs
  • Publisher : Springer Science & Business Media
  • Release : 2010-08-03
  • ISBN : 3642137229
  • Pages : 245 pages

Download or read book Dynamical Systems written by Werner Krabs and published by Springer Science & Business Media. This book was released on 2010-08-03 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the end of the nineteenth century Lyapunov and Poincaré developed the so called qualitative theory of differential equations and introduced geometric- topological considerations which have led to the concept of dynamical systems. In its present abstract form this concept goes back to G.D. Birkhoff. This is also the starting point of Chapter 1 of this book in which uncontrolled and controlled time-continuous and time-discrete systems are investigated. Controlled dynamical systems could be considered as dynamical systems in the strong sense, if the controls were incorporated into the state space. We, however, adapt the conventional treatment of controlled systems as in control theory. We are mainly interested in the question of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications.

Book Dichotomies and Stability in Nonautonomous Linear Systems

Download or read book Dichotomies and Stability in Nonautonomous Linear Systems written by Yu. A. Mitropolsky and published by CRC Press. This book was released on 2002-10-10 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov func

Book Stability of Motion of Nonautonomous Systems  Methods of Limiting Equations

Download or read book Stability of Motion of Nonautonomous Systems Methods of Limiting Equations written by Junji Kato and published by Routledge. This book was released on 2019-09-09 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuing the strong tradition of functional analysis and stability theory for differential and integral equations already established by the previous volumes in this series, this innovative monograph considers in detail the method of limiting equations constructed in terms of the Bebutov-Miller-Sell concept, the method of comparison, and Lyapunov's direct method based on scalar, vector and matrix functions. The stability of abstract compacted and uniform dynamic processes, dispersed systems and evolutionary equations in Banach space are also discussed. For the first time, the method first employed by Krylov and Bogolubov in their investigations of oscillations in almost linear systems is applied to a new field: that of the stability problem of systems with small parameters. This important development should facilitate the solution of engineering problems in such areas as orbiting satellites, rocket motion, high-speed vehicles, power grids, and nuclear reactors.

Book Stability of Dynamical Systems

Download or read book Stability of Dynamical Systems written by and published by Springer Science & Business Media. This book was released on 2008 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.

Book Nonlinear Systems Stability Analysis

Download or read book Nonlinear Systems Stability Analysis written by Seyed Kamaleddin Yadavar Nikravesh and published by CRC Press. This book was released on 2018-09-03 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: The equations used to describe dynamic properties of physical systems are often nonlinear, and it is rarely possible to find their solutions. Although numerical solutions are impractical and graphical techniques are not useful for many types of systems, there are different theorems and methods that are useful regarding qualitative properties of nonlinear systems and their solutions—system stability being the most crucial property. Without stability, a system will not have value. Nonlinear Systems Stability Analysis: Lyapunov-Based Approach introduces advanced tools for stability analysis of nonlinear systems. It presents the most recent progress in stability analysis and provides a complete review of the dynamic systems stability analysis methods using Lyapunov approaches. The author discusses standard stability techniques, highlighting their shortcomings, and also describes recent developments in stability analysis that can improve applicability of the standard methods. The text covers mostly new topics such as stability of homogonous nonlinear systems and higher order Lyapunov functions derivatives for stability analysis. It also addresses special classes of nonlinear systems including time-delayed and fuzzy systems. Presenting new methods, this book provides a nearly complete set of methods for constructing Lyapunov functions in both autonomous and nonautonomous systems, touching on new topics that open up novel research possibilities. Gathering a body of research into one volume, this text offers information to help engineers design stable systems using practice-oriented methods and can be used for graduate courses in a range of engineering disciplines.

Book An Introduction To Nonautonomous Dynamical Systems And Their Attractors

Download or read book An Introduction To Nonautonomous Dynamical Systems And Their Attractors written by Peter Kloeden and published by World Scientific. This book was released on 2020-11-25 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nature of time in a nonautonomous dynamical system is very different from that in autonomous systems, which depend only on the time that has elapsed since starting rather than on the actual time itself. Consequently, limiting objects may not exist in actual time as in autonomous systems. New concepts of attractors in nonautonomous dynamical system are thus required.In addition, the definition of a dynamical system itself needs to be generalised to the nonautonomous context. Here two possibilities are considered: two-parameter semigroups or processes and the skew product flows. Their attractors are defined in terms of families of sets that are mapped onto each other under the dynamics rather than a single set as in autonomous systems. Two types of attraction are now possible: pullback attraction, which depends on the behaviour from the system in the distant past, and forward attraction, which depends on the behaviour of the system in the distant future. These are generally independent of each other.The component subsets of pullback and forward attractors exist in actual time. The asymptotic behaviour in the future limit is characterised by omega-limit sets, in terms of which form what are called forward attracting sets. They are generally not invariant in the conventional sense, but are asymptotically invariant in general and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant.Much of this book is based on lectures given by the authors in Frankfurt and Wuhan. It was written mainly when the first author held a 'Thousand Expert' Professorship at the Huazhong University of Science and Technology in Wuhan.

Book Nonlinear Dynamical Systems and Control

Download or read book Nonlinear Dynamical Systems and Control written by Wassim M. Haddad and published by Princeton University Press. This book was released on 2011-09-19 with total page 975 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

Book Stability and Bifurcation Theory for Non Autonomous Differential Equations

Download or read book Stability and Bifurcation Theory for Non Autonomous Differential Equations written by Anna Capietto and published by Springer. This book was released on 2012-12-14 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the notes from five lecture courses devoted to nonautonomous differential systems, in which appropriate topological and dynamical techniques were described and applied to a variety of problems. The courses took place during the C.I.M.E. Session "Stability and Bifurcation Problems for Non-Autonomous Differential Equations," held in Cetraro, Italy, June 19-25 2011. Anna Capietto and Jean Mawhin lectured on nonlinear boundary value problems; they applied the Maslov index and degree-theoretic methods in this context. Rafael Ortega discussed the theory of twist maps with nonperiodic phase and presented applications. Peter Kloeden and Sylvia Novo showed how dynamical methods can be used to study the stability/bifurcation properties of bounded solutions and of attracting sets for nonautonomous differential and functional-differential equations. The volume will be of interest to all researchers working in these and related fields.

Book Nonlinear Systems Stability Analysis

Download or read book Nonlinear Systems Stability Analysis written by Seyed Kamaleddin Yadavar Nikravesh and published by CRC Press. This book was released on 2018-09-03 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The equations used to describe dynamic properties of physical systems are often nonlinear, and it is rarely possible to find their solutions. Although numerical solutions are impractical and graphical techniques are not useful for many types of systems, there are different theorems and methods that are useful regarding qualitative properties of nonlinear systems and their solutions—system stability being the most crucial property. Without stability, a system will not have value. Nonlinear Systems Stability Analysis: Lyapunov-Based Approach introduces advanced tools for stability analysis of nonlinear systems. It presents the most recent progress in stability analysis and provides a complete review of the dynamic systems stability analysis methods using Lyapunov approaches. The author discusses standard stability techniques, highlighting their shortcomings, and also describes recent developments in stability analysis that can improve applicability of the standard methods. The text covers mostly new topics such as stability of homogonous nonlinear systems and higher order Lyapunov functions derivatives for stability analysis. It also addresses special classes of nonlinear systems including time-delayed and fuzzy systems. Presenting new methods, this book provides a nearly complete set of methods for constructing Lyapunov functions in both autonomous and nonautonomous systems, touching on new topics that open up novel research possibilities. Gathering a body of research into one volume, this text offers information to help engineers design stable systems using practice-oriented methods and can be used for graduate courses in a range of engineering disciplines.

Book Stability of Dynamical Systems

Download or read book Stability of Dynamical Systems written by Anthony N. Michel and published by Springer. This book was released on 2015-03-30 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems. For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonic Lyapunov functions. Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks. The authors cover the following four general topics: - Representation and modeling of dynamical systems of the types described above - Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions - Specialization of this stability theory to finite-dimensional dynamical systems - Specialization of this stability theory to infinite-dimensional dynamical systems Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this book can be used as a textbook for graduate courses in stability theory of dynamical systems. It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences. Review of the First Edition: “The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems. [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.” - Alessandro Astolfi, IEEE Control Systems Magazine, February 2009

Book Finite Time Stability  An Input Output Approach

Download or read book Finite Time Stability An Input Output Approach written by Francesco Amato and published by John Wiley & Sons. This book was released on 2018-10-08 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.

Book Global Attractors of Non autonomous Dissipative Dynamical Systems

Download or read book Global Attractors of Non autonomous Dissipative Dynamical Systems written by David N. Cheban and published by World Scientific. This book was released on 2004 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor.

Book Attractivity and Bifurcation for Nonautonomous Dynamical Systems

Download or read book Attractivity and Bifurcation for Nonautonomous Dynamical Systems written by Martin Rasmussen and published by Springer Science & Business Media. This book was released on 2007-06-08 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although, bifurcation theory of equations with autonomous and periodic time dependence is a major object of research in the study of dynamical systems since decades, the notion of a nonautonomous bifurcation is not yet established. In this book, two different approaches are developed which are based on special definitions of local attractivity and repulsivity. It is shown that these notions lead to nonautonomous Morse decompositions.