EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Handbook of Sol Gel Science and Technology

Download or read book Handbook of Sol Gel Science and Technology written by Lisa Klein and published by Springer Nature. This book was released on 2018-05-31 with total page 3755 pages. Available in PDF, EPUB and Kindle. Book excerpt: This completely updated and expanded second edition stands as a comprehensive knowledgebase on both the fundamentals and applications of this important materials processing method. The diverse, international team of contributing authors of this reference clarify in extensive detail properties and applications of sol-gel science and technology as it pertains to the production of substances, active and non-active, including optical, electronic, chemical, sensor, bio- and structural materials. Essential to a wide range of manufacturing industries, the compilation divides into the three complementary sections: Sol-Gel Processing, devoted to general aspects of processing and recently developed materials such as organic-inorganic hybrids, photonic crystals, ferroelectric coatings, and photocatalysts; Characterization of Sol-Gel Materials and Products, presenting contributions that highlight the notion that useful materials are only produced when characterization is tied to processing, such as determination of structure by NMR, in-situ characterization of the sol-gel reaction process, determination of microstructure of oxide gels, characterization of porous structure of gels by the surface measurements, and characterization of organic-inorganic hybrid; and Applications of Sol-Gel Technology, covering applications such as the sol-gel method used in processing of bulk silica glasses, bulk porous gels prepared by sol-gel method, application of sol-gel method to fabrication of glass and ceramic fibers, reflective and antireflective coating films, application of sol-gel method to formation of photocatalytic coating films, and application of sol-gel method to bioactive coating films. The comprehensive scope and integrated treatment of topics make this reference volume ideal for R&D scientists and engineers across a wide range of disciplines and professional interests.

Book Handbook of sol gel science and technology  3  Applications of sol gel technology

Download or read book Handbook of sol gel science and technology 3 Applications of sol gel technology written by Sumio Sakka and published by Springer Science & Business Media. This book was released on 2005 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since Dr. Disiich of Germany prepared a glass lens by the sol-gel method around 1970, sol-gel science and technology has continued to develop. Since then this field has seen remarkable technical developments as well as a broadening of the applications of sol-gel science and technology. There is a growing need for a comprehensive reference that treats both the fundamentals and the applications, and this is the aim of "Handbook of Sol-Gel Science and Technology."The primary purpose of sol-gel science and technology is to produce materials, active and non-active including optical, electronic, chemical, sensor, bio- and structural materials. This means that sol-gel science and technology is related to all kinds of manufacturing industries. Thus Volume 1, "Sol-Gel Processing," is devoted to general aspects of processing. Newly developed materials such as organic-inorganic hybrids, photonic crystals, ferroelectric coatings, photocatalysts will be covered. Topics in this volume include: Volume 2, "Characterization of Sol-Gel Materials and Products, "highlights the important fact that useful materials are only produced when characterization is tied to processing. Furthermore, characterization is essential to the understanding of nanostructured materials, and sol-gel technology is a most important technology in this new field. Since nanomaterials display their functional property based on their nano- and micro-structure, "characterization" is very important. Topics found in Volume 2 include: Sol-gel technology is a versatile technology, making it possible to produce a wide variety of materials and to provide existing substances with novel properties. This technology was applied to producingnovel materials, for example organic-inorganic hybrids, which are quite difficult to make by other fabricating techniques, and it was also applied to producing materials based on high temperature superconducting oxides. "Applications of Sol-Gel Technology," (Volume 3), will cover applications such as:

Book Effect of Water on the Electrochromic Properties of CeO2 TiO2  WO3 and Nb2O5

Download or read book Effect of Water on the Electrochromic Properties of CeO2 TiO2 WO3 and Nb2O5 written by Donglan Sun and published by . This book was released on 2005 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrochromism of NiO TiO2 Sol Gel Layers and Devices Made of Them

Download or read book Electrochromism of NiO TiO2 Sol Gel Layers and Devices Made of Them written by Amal Al-Kahlout and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Low Temperature Sol gel Preparation of Nonocrystalline TiO2 Thin Films

Download or read book Low Temperature Sol gel Preparation of Nonocrystalline TiO2 Thin Films written by Y. Djaoued and published by . This book was released on 2002 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrochromic Materials and Devices

Download or read book Electrochromic Materials and Devices written by Roger J. Mortimer and published by John Wiley & Sons. This book was released on 2015-10-26 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrochromic materials can change their properties under the influence of an electrical voltage or current. Different classes of materials show this behavior such as transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the color change is persistent, the electric field needs only to be applied to initiate the switching, allowing for applications such as low-energy consumption displays, light-adapting mirrors in the automobile industry and smart windows for which the amount of transmitted light and heat can be controlled. The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, biomimicry, wearable displays and fashion. The last part rounds off the book by device case studies and environmental impact issues.

Book Studies of Photocatalytic Processes at Nanoporous TiO2 Film Electrodes by Photoelectrochemical Techniques and Development of a Novel Methodology for Rapid Determination of Chemical Oxygen Demand

Download or read book Studies of Photocatalytic Processes at Nanoporous TiO2 Film Electrodes by Photoelectrochemical Techniques and Development of a Novel Methodology for Rapid Determination of Chemical Oxygen Demand written by Dianlu Jiang and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: In this work, a series of simple, rapid and effective photoelectrochemical methodologies have been developed and successfully applied to the study of kinetic and thermodynamic characteristics of photocatalytic oxidation processes at TiO2 nanoparticulate films. As an application of the systematic studies of photocatalytic processes by photoelectrochemical techniques, a rapid, direct, absolute, environmental-friendly and accurate COD analysis method was successfully developed. In this work, the TiO2 nanoparticles colloid was prepared by the sol-gel method. The TiO2 nanoparticles were immobilized onto ITO conducting glass slides by dip-coating method. Thermal treatment was carried out to obtain nanoporous TiO2 films of different structures. At low calcination temperature (below 600 degrees C), nanoporous TiO2 films of pure anatase phase were prepared. At high calcination temperature (above 600 degrees C), nanoporous TiO2 films of mixed anatase and rutile phases were obtained. At these film electrodes, the work was carried out. By employing steady state photocurrent method and choosing phthalic acid as the model compound, the photocatalytic activity of the TiO2 nanoporous films calcined at various temperatures and for different lengths of time was evaluated. It was found that the films with mixed anatase and rutile phases calcined at high temperature exhibited high photocatalytic activity. Based on semiconductor band theory, a model was proposed, which explained well this finding. By employing linear sweep voltammetry (under illumination) and choosing glucose (an effective photohole scavenger) as a model compound, the characteristics of the photocatalytic processes at nanoparticulate semiconductor electrodes were investigated. Characteristics of the nanoporous semiconductor electrodes markedly different from bulk semiconductor electrodes were observed. That is, within a large range of electrode potentials above the flat band potential the electrodes behaved as a pure resistance instead of exhibiting variable resistance expected for bulk semiconductor electrodes. The magnitude of the resistance was dependent on the properties of the electrodes and the maximum photocatalytic oxidation rate at TiO2 surface determined by the light intensity and substrate concentration. A model was proposed, which explained well the special characteristics of particulate semiconductor electrodes (nanoporous semiconductor electrodes). This is the first clear description of the overall photocatalytic process at nanoparticulate semiconductor electrodes. The investigation set a theoretical foundation for employing photoelectrochemical techniques to study photocatalytic processes. By using the transient technique (illumination step method analogous to potential step method in conventional electrochemistry), the adsorption of a number of strong adsorbates on both low temperature and high temperature calcined TiO2 nanoporous films was investigated. Similar adsorption characteristics for different adsorbates on different films were observed. In all the cases, three different surface bound complexes were identified, which was attributed to the heterogeneity of TiO2 surface. The photocatalytic degradation kinetics of the pre-adsorbed organic compounds of different chemical nature was also studied by processing the photocurrent-time profiles. Two different photocatalytic processes, exhibiting different rate characteristics, were observed. This was, again, attributed to the heterogeneity of the TiO2 surface corresponding to heterogeneous adsorption characteristics. The catalytic first order rate constants of both fast and slow processes were obtained for different organic compounds. It was found that for different adsorbates of different chemical nature the magnitudes of rate constant for the slow kinetic process were very similar, while the magnitudes of rate constant for the fast process were significantly affected by the photohole demand characteristics of different adsorbates. Photohole demand distribution that depends on the size and structure of the adsorbed molecules was believed to be responsible for the difference. By employing steady state photocurrent method, the photocatalytic degradation kinetic characteristics of both strong adsorbates and weak adsorbates of different chemical structures were compared at pure anatase TiO2 nanoporous TiO2 films as well as at anatase/rutile mixed phase TiO2 nanoporous film electrodes. At the former electrodes for all the different organic compounds studied, the photocatalytic reaction rate increased linearly with concentration at low concentrations. Under such conditions, it was demonstrated that the overall photocatalytic process was controlled by diffusion and was independent of the chemical nature of organic compounds. However, the linear concentration range and the maximum photocatalytic reaction rate at high concentrations were significantly dependent on the chemical nature of the substrates. This was explained by the difference in the interaction of different organic compounds with TiO2 surface, the difference in their photohole demand distributions at the TiO2 surface and the difference in their nature of intermediates formed during their photocatalytic mineralization. In contrast, at the latter electrodes for the photocatalytic oxidation of different organic compounds the linear ranges (diffusion control concentration range) and the maximum reaction rates at high concentration were much larger than at the former electrodes and much less dependent on the chemical nature of the organic compounds. The spatial separation of photoelectrons and photoholes (due to the coexistence of rutile phase and anatase phase) and the increase in the lifetime of photoelectrons and photoholes are responsible for the excellent photocatalytic activity of the electrodes. By employing the thin-layer photoelectrochemical technique (analogous to the thin-layer exhaustive electrolytic technique), the photocatalytic oxidation of different organic compounds at the mixed phase TiO2 nanoporous electrodes were investigated in a thin layer photoelectrochemical cell. It was found that the charge derived from exhaustive oxidation agreed well with theoretical charge expected for the mineralisation of a specific organic compound. This finding was true for all the compounds investigated and was also true for mixtures of different organic compounds. The photocatalytic degradation kinetics of different organic compounds of different chemical identities in the thin layer cell was also investigated by the photoelectrochemical method. Two kinetic processes of different decay time constants were identified, which were attributed to the degradation of preadsorbed compounds and the degradation of compounds in solution. For the degradation of compounds in solution, a change in the overall control step from substrate diffusion to heterogeneous surface reaction was observed. For different organic compounds, the variation of the rate constant was determined by the photohole demand rather than by the chemical identities of substrates. The kinetics of the fast kinetic process, on the other hand, was greatly affected by the adsorption properties of the substrates. For the strong adsorbates, the rate was much larger than for weak adsorbates. However, the rate constant of the process was independent of the chemical identities of the substrates and the variation of the constant was also determined by the photohole demand. Based on the principles of exhaustive photoelectrocatalytic degradation of organic matter in a thin layer cell, a novel, rapid, direct, environmental-friendly and absolute COD analysis method was developed. The method was tested on synthetic samples as well as real wastewater samples from a variety of industries. For synthetic samples with given compositions the COD values measured by my method agree very well with theoretical COD value. For real samples and synthetic samples the COD values measured by my method correlated very well with those measured by standard dichromate COD analysis method.

Book Influence of Stoichiometry on the Electrochromiccerium titanium Oxide Compounds

Download or read book Influence of Stoichiometry on the Electrochromiccerium titanium Oxide Compounds written by and published by . This book was released on 1997 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: CeO2-TiO2 finds use as passive counter-electrode in electrochromic devices. Thin films were produced by de-sputtering in a wide range of compositions. Influence of total pressure and oxygen partial pressure on the optical constants of TiO2 was investigated. Slightly substoichiometric Ti02 films exhibit a red-shift of the bandgap. The Ti02 content in the compound essentially determines the degree of cathodical coloring upon Li+ intercalation [1]. However, pure TiO2 films with comparable visible transmittance in the clear state behave differently during electrochemical cycling depending on oxygen stoichiometry. Films that are deposited at higher total pressure are more oxygen rich and require initial formatting until current voltage cycles become stable. CeO2-Ti02 films of intermediate compositions have the relatively highest charge capacity. Comparison with atomic force microscopy indicates a correlation of small grain size with high charge capacity.

Book Sol gel Coatings for Electrochromic Devices

Download or read book Sol gel Coatings for Electrochromic Devices written by Marcelo A. Macedo and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Vanadium Dioxide Based Thermochromic Smart Windows

Download or read book Vanadium Dioxide Based Thermochromic Smart Windows written by Yi Long and published by CRC Press. This book was released on 2021-05-27 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The usage of building energy accounts for 30–40% of total energy consumption in developed countries, exceeding the amount for industry or transportation. Around 50% energy for building services is contributed by heating, ventilation, and air-conditioning (HVAC) systems. More importantly, both building and HVAC energy consumptions are predicted to increase in the next two decades. Windows are considered as the least energy-efficient components of buildings. Therefore, smart windows are becoming increasingly important as they are capable of reducing HVAC energy usage by tuning the transmitted sunlight in a smart and favoured way: blocking solar irradiation on hot days, while letting it pass through on cold days. Compared with other type of smart windows, thermochromic windows have the unique advantages of cost-effectiveness, rational stimulus, and passive response. This book covers fabrication of vanadium dioxide–based smart windows, discusses various strategies to enhance their performance, and shares perspectives from the top scientists in this particular field.

Book Sol Gel Technologies for Glass Producers and Users

Download or read book Sol Gel Technologies for Glass Producers and Users written by Michel Andre Aegerter and published by Springer Science & Business Media. This book was released on 2013-03-19 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sol-Gel Techniques for Glass Producers and Users provides technological information, descriptions and characterizations of prototypes, or products already on the market, and illustrates advantages and disadvantages of the sol-gel process in comparison to other methods. The first chapter entitled "Wet Chemical Technology" gives a summary of the basic principles of the sol-gel chemistry. The most promising applications are related to coatings. Chapter 2 describes the various "Wet Chemical Coating Technologies" from glass cleaning to many deposition and post-coating treatment techniques. These include patterning of coatings through direct or indirect techniques which have became very important and for which the sol-gel processing is particularly well adapted. Chapter 3 entitled "Bulk Glass Technologies" reports on the preparation of special glasses for different applications. Chapter 4 entitled "Coatings and Materials Properties" describes the properties of the different coatings and the sol-gel materials, fibers and powders. The chapter also includes a section dedicated to the characterization techniques especially applied to sol-gel coatings and products.

Book Cerium Oxide  CeO2   Synthesis  Properties and Applications

Download or read book Cerium Oxide CeO2 Synthesis Properties and Applications written by Salvatore Scire and published by Elsevier. This book was released on 2019-08-21 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cerium Oxide (CeO2): Synthesis, Properties and Applications provides an updated and comprehensive account of the research in the field of cerium oxide based materials. The book is divided into three main blocks that deal with its properties, synthesis and applications. Special attention is devoted to the growing number of applications of ceria based materials, including their usage in industrial and environmental catalysis and photocatalysis, energy production and storage, sensors, cosmetics, radioprotection, glass technology, pigments, stainless steel and toxicology. A brief historical introduction gives users background, and a final chapter addresses future perspectives and outlooks to stimulate future research. The book is intended for a wide audience, including students, academics and industrial researchers working in materials science, chemistry and physics. - Addresses a wide range of applications of ceria-based materials, including catalysis, energy production and storage, sensors, cosmetics and toxicology - Provides the fundamentals of ceria-based materials, including synthesis methods, materials properties, toxicology and surface chemistry - Includes nanostructured ceria-based materials and a discussion of future prospects and outlooks

Book Chemical Solution Deposition of Functional Oxide Thin Films

Download or read book Chemical Solution Deposition of Functional Oxide Thin Films written by Theodor Schneller and published by Springer Science & Business Media. This book was released on 2014-01-24 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.

Book Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Download or read book Chemically Deposited Nanocrystalline Metal Oxide Thin Films written by Fabian I. Ezema and published by Springer Nature. This book was released on 2021-06-26 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.