Download or read book Statistical Plasma Physics Volume I written by Setsuo Ichimaru and published by CRC Press. This book was released on 2018-05-04 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma physics is an integral part of statistical physics, complete with its own basic theories. Designed as a two-volume set, Statistical Plasma Physics is intended for advanced undergraduate and beginning graduate courses on plasma and statistical physics, and as such, its presentation is self-contained and should be read without difficulty by those with backgrounds in classical mechanics, electricity and magnetism, quantum mechanics, and statistics. Major topics include: plasma phenomena in nature, kinetic equations, plasmas and dielectric media, electromagnetic properties of Vlasov plasmas in thermodynamic equilibria, transient processes, and instabilities.
Download or read book Basic Principles Of Plasma Physics written by Setsuo Ichimaru and published by CRC Press. This book was released on 2018-03-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes a statistical approach to the basics of plasma physics.
Download or read book Turbulence in the Solar Wind written by Roberto Bruno and published by Springer. This book was released on 2016-10-07 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom’s law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.
Download or read book Fragmented Energy Release in Sun and Stars written by G.H.J. van den Oord and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic energy release plays an important role in a wide variety of cosmic objects such as the Sun, stellar coronae, stellar and galactic accretion disks and pulsars. The observed radio, X-ray and gamma-ray emission often directly results from magnetic `flares', implying that these processes are spatially fragmented and of an impulsive nature. A true understanding of these processes requires a combined magnetohydrodynamical and plasma physical approach. Fragmented Energy Release in Sun and Stars: the Interface between MHD and Plasma Physics provides a comprehensive, interdisciplinary summary of magnetic energy release in the Sun and stars, in accretion disks, in pulsar magnetospheres and in laboratory plasmas. These proceedings include papers on both theoretical and observational aspects. Fragmented Energy Release in Sun and Stars: the Interface between MHD and Plasma Physics is for researchers in the fields of solar physics, stellar astrophysics and (laboratory) plasma physics and is a useful resource book for graduate level astrophysics courses.
Download or read book Introduction to Plasma Physics and Controlled Fusion written by Francis F. Chen and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Energy Research Abstracts written by and published by . This book was released on 1993 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1975 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.
Download or read book Cross Scale Coupling in Space Plasmas written by James L. Horwitz and published by American Geophysical Union. This book was released on 1995-01-09 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 93. A principal goal of space plasma researchers is to understand the influence of various transport processes on each other, even when such processes operate at widely varying spatial and temporal scales. We know that large-scale plasma flows in space lead to unstable conditions with small spatial (centimeters to meters) and temporal (microseconds to seconds) scales. The large-scale flows, for example in the magnetosphere-ionosphere system, involve scale lengths of kilometers to several Earth radii and temporal scales of minutes to hours. We must know specific contextual answers to the questions: Do the small-scale waves (microprocesses) modify the large-scale flows? Do these modifications significantly affect the transport of mass, momentum, and energy? How can such coupling processes and their influences be revealed observationally? And, perhaps most challenging of all, how do we incorporate the microprocesses into theoretical models of larger-scale space plasma transport?
Download or read book ERDA Energy Research Abstracts written by and published by . This book was released on 1983 with total page 1144 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Annales Geophysicae written by and published by . This book was released on 2008 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Low Frequency Waves in Space Plasmas written by Andreas Keiling and published by John Wiley & Sons. This book was released on 2016-04-04 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun’s atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.
Download or read book Microphysics of Cosmic Plasmas written by André Balogh and published by Springer Science & Business Media. This book was released on 2014-01-15 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a comprehensive review of physical processes in astrophysical plasmas. This title presents a review of the detailed aspects of the physical processes that underlie the observed properties, structures and dynamics of cosmic plasmas. An assessment of the status of understanding of microscale processes in all astrophysical collisionless plasmas is provided. The topics discussed include turbulence in astrophysical and solar system plasmas as a phenomenological description of their dynamic properties on all scales; observational, theoretical and modelling aspects of collisionless magnetic reconnection; the formation and dynamics of shock waves; and a review and assessment of microprocesses, such as the hierarchy of plasma instabilities, non-local and non-diffusive transport processes and ionisation and radiation processes. In addition, some of the lessons that have been learned from the extensive existing knowledge of laboratory plasmas as applied to astrophysical problems are also covered. This volume is aimed at graduate students and researchers active in the areas of cosmic plasmas and space science. Originally published in Space Science Reviews journal, Vol. 278/2-4, 2013.
Download or read book Laboratory Astrophysics and Space Research written by P. Ehrenfreund and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the most recent developments of laboratory studies in astrophysics and space research. The individual chapters review laboratory investigations under simulated space conditions, studies for the design of successful space experiments or for supporting the interpretation of astronomical and space mission recorded data. Related theoretical models, numerical simulations and in situ observations demonstrate the necessity of experimental work on the Earth's surface. The expertise of the contributing scientists covers a broad spectrum and is included in general overviews from fundamental science to recent space technology. The book intends to serve as a reference for researchers and graduate students on the most recent activities and results in laboratory astrophysics, and to give reviews of their applications in astronomy, planetology, cosmochemistry, space research and Solar System exploration.
Download or read book Introduction to Plasma Physics written by R.J Goldston and published by CRC Press. This book was released on 2020-07-14 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.
Download or read book Kinetic Alfv n Waves in Laboratory Space and Astrophysical Plasmas written by De-Jin Wu and published by Springer Nature. This book was released on 2020-01-07 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic introduction to the observation and application of kinetic Alfven waves (KAWs) in various plasma environments, with a special focus on the solar-terrestrial coupling system. Alfven waves are low-frequency and long-wavelength fluctuations that pervade laboratory, space and cosmic plasmas. KAWs are dispersive Alfven waves with a short wavelength comparable to particle kinematic scales and hence can play important roles in the energization and transport of plasma particles, the formation of fine magneto-plasma structures, and the dissipation of turbulent Alfven waves. Since the 1990s, experimental studies on KAWs in laboratory and space plasmas have significantly advanced our understanding of KAWs, making them an increasingly interesting subject. Without a doubt, the solar–terrestrial coupling system provides us with a unique natural laboratory for the comprehensive study of KAWs. This book presents extensive observations of KAWs in solar and heliospheric plasmas, as well as numerous applications of KAWs in the solar-terrestrial coupling system, including solar atmosphere heating, solarwind turbulence, solar wind-magnetosphere interactions, and magnetosphere-ionosphere coupling. In addition, for the sake of consistency, the book includes the basic theories and physical properties of KAWs, as well as their experimental demonstrations in laboratory plasmas. In closing, it discusses possible applications of KAWs to other astrophysical plasmas. Accordingly, the book covers all the major aspects of KAWs in a coherent manner that will appeal to advanced graduate students and researchers whose work involves laboratory, space and astrophysical plasmas.
Download or read book The Norwegian Aurora Polaris Expedition 1902 1903 written by Kristian Birkeland and published by . This book was released on 1908 with total page 1084 pages. Available in PDF, EPUB and Kindle. Book excerpt: