EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Long term Performance of GFRP Reinforcement

Download or read book Long term Performance of GFRP Reinforcement written by David Trejo and published by . This book was released on 2009 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Long term Performance of GFRP Reinforced Concrete Beams and Bars Subjected to Aggressive Environments

Download or read book Long term Performance of GFRP Reinforced Concrete Beams and Bars Subjected to Aggressive Environments written by Yeonho Park and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of fiber-reinforced polymer (FRP) bars in reinforced concrete (RC) structures has emerged as an alternative to traditional steel reinforcement environments and other applications where steel has shown greater vulnerability. Although the number of analytical and experimental studies on RC beams with FRP reinforcement has increased in recent decades, its long term performance is still questioned in comparison to the traditional steel reinforcement. That is, longterm performance is a much recognized but less-mentioned topic in the field of the reinforced concrete with glass-FRP (GFRP) re-bars. There is a need to validate long-term performance of FRP reinforced concrete structures, and accelerated testing can provide the data for this validation. In order to predict long-term behavior of reinforced concrete with GFRP bars (RC-GFRP), it is critical to determine the effects that long term exposure to the environment can have in degrading the composite materials. This study presents the results and discussion of an experimental study concerning longterm behaviors of GFRP bars and concrete beams reinforced with GFRP bars after accelerated aging for 300days in an environmental chamber at 115°F(80% relative humidity). The change of strength/stiffness properties of GFRP bars and concrete beams reinforced with GFRP as compared to steel bars were investigated in this study for various conditioning schemes with the application of sustained loads. Two types (Wrapped surface / Sand-coated surface) of GFRP were used. All beams were clamped in pairs using transverse steel rods at the beam end to simulate cracks typical of those produced by in service conditions. Prior to exposure in the chamber, beams were precracked to simulate the level of cracking seen during service loads. Tensile strength retentions of GFRP bars were tested and considered as the indicator of durability performance. Accelerated aging procedure was conservatively calibrated with the natural weathering data to obtain real time weathering based on the Arrhenius method. Analytical analysis was also conducted to investigate the degradation of strength/stiffness. In addition, not only the change of bond strength between GFRP bars and concrete after aging, but also the durability performance concrete beams with GFRP and steel bars were investigated after exposure to specific accelerated aging conditions(115°F, RH=80% and 3% saline solution). A non-destructive acoustic emission technique was conducted to assess long-term performances of GFRP bars embedded in real concrete and concrete beams (reinforced with GFRP and steel bars) subjected to temperature, humidity and exposure to saline solution of aging conditions. Both the experimental testing and signal-processing procedures were reported in detail. Various parameters were extracted from the AE received signals and analyzed. In all cases, results showed not only that the strength and modulus of elasticity of GFRP and steel bars were reduced by the increase of exposure duration to cement-mortar paste at two different temperatures, but also the moment carrying capacities of RC-GFRP beams decreased and the deflections increased as a function of time when exposing in circumstances for accelerated aging. The effects of accelerated aging on the GFRP bars were not critical in terms of bond strength. The AE activity was found sensitive to duration of accelerated aging, type of reinforcement and reinforcement ratio. Acoustic emission technique could provide a useful verification of degradation level of concrete structures reinforced with GFRP and steel rods.

Book A Time variant Probabilistic Model for Predicting the Longer term Performance of GFRP Reinforcing Bars Embedded in Concrete

Download or read book A Time variant Probabilistic Model for Predicting the Longer term Performance of GFRP Reinforcing Bars Embedded in Concrete written by Jeongjoo Kim and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Although Glass Fiber Reinforced Polymer (GFRP) has many potential advantages as reinforcement in concrete structures, the loss in tensile strength of the GFRP reinforcing bar can be significant when exposed to the high alkali environments. Much effort was made to estimate the durability performance of GFRP in concrete; however, it is widely believed the data from accelerated aging tests is not appropriate to predict the longer-term performance of GFRP reinforcing bars. The lack of validated long-term data is the major obstacle for broad application of GFRP reinforcement in civil engineering practices. The main purpose of this study is to evaluate the longer-term deterioration rate of GFRP bars embedded in concrete, and to develop an accurate model that can provide better information to predict the longer-term performance of GFRP bars. In previous studies performed by Trejo, three GFRP bar types (V1, V2, and P type) with two different diameters (16 and 19 mm [0.625, and 0.7 in. referred as #5 and #6, respectively]) provided by different manufacturers were embedded in concrete beams. After pre-cracking by bending tests, specimens were stored outdoors at the Riverside Campus of Texas A & M University in College Station, Texas. After 7 years of outdoor exposure, the GFRP bars were extracted from the concrete beams and tension tests were performed to estimate the residual tensile strength. Several physical tests were also performed to assess the potential changes in the material. It was found that the tensile capacity of the GFRP bars embedded in concrete decreased; however, no significant changes in modulus of elasticity (MOE) were observed. Using this data and limited data from the literature, a probabilistic capacity model was developed using Bayesian updating. The developed probabilistic capacity model appropriately accounts for statistical uncertainties, considering the influence of the missing variables and remaining error due to the inexact model form. In this study, the reduction in tensile strength of GFRP reinforcement embedded in concrete is a function of the diffusion rate of the resin matrix, bar diameter, and time. The probabilistic model predicts that smaller GFRP bars exhibit faster degradation in the tensile capacity than the larger GFRP bars. For the GFRP bars, the model indicates that the probability that the environmental reduction factor required by The American Concrete Institute (ACI) and the American Association of State Highway Transportation Officials (AASHTO) for the design of concrete structures containing GFRP reinforcement is below the required value is 0.4, 0.25, and 0.2 after 100 years for #3, #5, and #6, respectively. The ACI 440 and AASHTO design strength for smaller bars is likely not safe.

Book Guide for the Design and Construction of Concrete Reinforced with Fiber Reinforced Polymer Bars

Download or read book Guide for the Design and Construction of Concrete Reinforced with Fiber Reinforced Polymer Bars written by ACI Committee 440 and published by . This book was released on 2003 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Long term Performance and Durability of Masonry Structures

Download or read book Long term Performance and Durability of Masonry Structures written by Bahman Ghiassi and published by Woodhead Publishing. This book was released on 2018-11-27 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Long-Term Performance and Durability of Masonry Structures: Degradation Mechanisms, Health Monitoring and Service Life Design focuses on the long-term performance of masonry and historical structures. The book covers a wide range of related topics, including degradation mechanisms in different masonry types, structural health monitoring techniques, and long-term performance and service life design approaches. Each chapter reflects recent findings and the state-of-the-art, providing practical guidelines. Key topics covered include the theoretical background, transport properties, testing and modeling, protective measures and standards and codes. The book's focus is on individual construction materials, the composite system and structural performance. - Covers all issues related to durability, including degradation mechanisms, testing and design, monitoring and service life design - Focuses on different masonry construction types - Presents a 'one-stop' reference for advanced postgraduate courses that focuses on the durability of masonry and historical constructions

Book Reinforced Concrete with FRP Bars

Download or read book Reinforced Concrete with FRP Bars written by Antonio Nanni and published by CRC Press. This book was released on 2014-03-05 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Corrosion-resistant, electromagnetic transparent and lightweight fiber-reinforced polymers (FRPs) are accepted as valid alternatives to steel in concrete reinforcement. Reinforced Concrete with FRP Bars: Mechanics and Design, a technical guide based on the authors more than 30 years of collective experience, provides principles, algorithms, and pr

Book 10th International Conference on FRP Composites in Civil Engineering

Download or read book 10th International Conference on FRP Composites in Civil Engineering written by Alper Ilki and published by Springer Nature. This book was released on 2021-11-26 with total page 2516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume highlights the latest advances, innovations, and applications in the field of FRP composites and structures, as presented by leading international researchers and engineers at the 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), held in Istanbul, Turkey on December 8-10, 2021. It covers a diverse range of topics such as All FRP structures; Bond and interfacial stresses; Concrete-filled FRP tubular members; Concrete structures reinforced or pre-stressed with FRP; Confinement; Design issues/guidelines; Durability and long-term performance; Fire, impact and blast loading; FRP as internal reinforcement; Hybrid structures of FRP and other materials; Materials and products; Seismic retrofit of structures; Strengthening of concrete, steel, masonry and timber structures; and Testing. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.

Book Fiber reinforced plastic  FRP  Reinforcement for Concrete Structures

Download or read book Fiber reinforced plastic FRP Reinforcement for Concrete Structures written by Antonio Nanni and published by Elsevier Publishing Company. This book was released on 1993 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of fiber reinforced plastic (FRP) composites for prestressed and non-prestressed concrete reinforcement has developed into a technology with serious and substantial claims for the advancement of construction materials and methods. Research and development is now occurring worldwide. The 20 papers in this volume make a further contribution in advancing knowledge and acceptance of FRP composites for concrete reinforcement. The articles are divided into three parts. Part I introduces FRP reinforcement for concrete structures and describes general material properties and manufacturing meth.

Book Composites for Construction

Download or read book Composites for Construction written by Lawrence C. Bank and published by John Wiley & Sons. This book was released on 2006-07-21 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first textbook on the design of FRP for structural engineering applications Composites for Construction is a one-of-a-kind guide to understanding fiber-reinforced polymers (FRP) and designing and retrofitting structures with FRP. Written and organized like traditional textbooks on steel, concrete, and wood design, it demystifies FRP composites and demonstrates how both new and retrofit construction projects can especially benefit from these materials, such as offshore and waterfront structures, bridges, parking garages, cooling towers, and industrial buildings. The code-based design guidelines featured in this book allow for demonstrated applications to immediately be implemented in the real world. Covered codes and design guidelines include ACI 440, ASCE Structural Plastics Design Manual, EUROCOMP Design Code, AASHTO Specifications, and manufacturer-published design guides. Procedures are provided to the structural designer on how to use this combination of code-like documents to design with FRP profiles. In four convenient sections, Composites for Construction covers: * An introduction to FRP applications, products and properties, and to the methods of obtaining the characteristic properties of FRP materials for use in structural design * The design of concrete structural members reinforced with FRP reinforcing bars * Design of FRP strengthening systems such as strips, sheets, and fabrics for upgrading the strength and ductility of reinforced concrete structural members * The design of trusses and frames made entirely of FRP structural profiles produced by the pultrusion process

Book Non Metallic  FRP  Reinforcement for Concrete Structures

Download or read book Non Metallic FRP Reinforcement for Concrete Structures written by L. Taerwe and published by CRC Press. This book was released on 2004-06-02 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dealing with a wide range of non-metallic materials, this book opens up possibilities of lighter, more durable structures. With contributions from leading international researchers and design engineers, it provides a complete overview of current knowledge on the subject.

Book Advances in Mechatronics  Manufacturing  and Mechanical Engineering

Download or read book Advances in Mechatronics Manufacturing and Mechanical Engineering written by Muhammad Aizzat Zakaria and published by Springer Nature. This book was released on 2020-08-05 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights selected papers from the Mechanical Engineering track, with a focus on mechatronics and manufacturing, presented at the “Malaysian Technical Universities Conference on Engineering and Technology” (MUCET 2019). The conference brings together researchers and professionals in the fields of engineering, research and technology, providing a platform for future collaborations and the exchange of ideas.

Book Practical Performance Criteria and Durability Prediction Modeling of Glass Fiber Reinforced Polymer  GFRP  Bars

Download or read book Practical Performance Criteria and Durability Prediction Modeling of Glass Fiber Reinforced Polymer GFRP Bars written by Paulina Arczewska and published by . This book was released on 2017 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Glass fiber reinforced polymer (GFRP) bars are becoming a reasonable alternative to steel bars in reinforced concrete members as a method to address issues of corrosion and electromagnetic interference. This growing interest in GFRP reinforcement results in an increase in the types of products and their quantities in the market. GFRP bars are typically produced in an automated pultrusion process; however, when curved or bent bars are to be manufactured non-standardized production processes are adopted, which differ among manufacturers. This results in variability of the products, which raises concerns regarding quality and durability of the bars. Thus, to use GFRP bars more efficiently two fundamental technological barriers need to be resolved: material property and durability uncertainties. Quality control (QC) and assurance (QA) testing is a proper way to check the properties of bars before using them in structures. In this thesis, an attempt was made to study the influence of GFRP bars geometrical and mechanical characteristics variability on standardized quality control tests (tensile, shear, flexure, and cure ratio tests). Bars from two different companies with two different diameters and three different surface finishes were included in this study. Based on obtained results it was postulated that variability of the currently available GFRP bars has an influence on testing procedures. As for e.g., surface finishing affects anchorage length for the tensile test, or cost of the shear test can directly depend on a number of bar sizes that need to be tested. Tests, investigated in this research program, were found to be impractical and inconvenient in a rutile use. Thus. adjustment of testing procedures is needed to improve QA and QC testing. Subsequently, possible correlations between the bar properties were analyzed. Based on the research outcome the tensile-flexure correlation was found to be a great asset for quality control testing of GFRP bars. The study was performed with recognition of the composite bimodular properties in different states of stress (tension and compression) and the results were compared with standardized flexural strength determination protocols. A Weibull "Weakest Link Model" was utilized in the tensile-flexure strength correlation. Based on performed analysis it was found that correlation between tensile-flexure strength does exist and the flexure test potentially can be used as a tensile strength prediction method for QA testing. The difference between the analytical value of the tensile strength, obtained by proposed methodology, and tensile strength measured directly from the test did not exceed five percent. The second factor that partially impedes wider adaptation of GFRP bars is the absence of satisfactory life prediction models. Since GFRP bars are no longer used only as a longitudinal reinforcement, but also as stirrups in reinforced concrete structures, a model describing the deterioration of all properties is required. Thus, this research program is focused on the prediction capability of existing models to determine degradation of GFRP bar properties. An accelerated aging test (alkaline immersion) was introduced to study GFRP bars long-term performance. Specimens were kept in a highly alkaline solution (approximately 13 pH) under three temperatures: 50°C, 60°C, and 70°C; for three different periods of time: 30, 90, and 150 days. Existing strength retention models were validated using the obtained data and durability of GFRP bar properties was investigated. Two from four introduced in this research program strength retention models were found to be proper estimations for the long-term behavior of GFRP bar properties. It was found that all properties of GFRP bars that directly depend on the bar cross-section area are characterized by a similar rate of degradation (tensile, shear strength). While the flexure strength degrades quicker. Also, smaller bar diameters are characterized by the higher speed of degradation than the bars with bigger diameters. In fact, degradation of GFRP bar properties depends on many factors, including the type of resin, fiber content or bar surface finishing. Thus, the durability of GFRP reinforcement is a complex problem that required further analysis. Discussion and comparison of results between different bar types are presented in this thesis.

Book Aging and Durability of FRP Composites and Nanocomposites

Download or read book Aging and Durability of FRP Composites and Nanocomposites written by Arya Uthaman and published by Elsevier. This book was released on 2024-02-21 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: The usage of composites is a broad and growing area of scientific research, especially in developed and developing countries. These materials are used in a broad range of applications in both structural and civil engineering sectors. In many of these applications FRPs are exposed to one or more environmental influences, so they need to be designed to meet durability requirements to withstand even the harshest of environments. Aging and Durability of FRP Composites and Nanocomposites focuses on the latest developments in durability and long-term ageing studies of composite materials especially for those used in civil and structural engineering applications. The book will be a valuable reference resource for materials scientists and engineers who want to learn more about the long-term service life and durability behaviour of composites under different environmental conditions. - Discusses composites and polymer nanocomposites - Reviews different types of aging processes and degradation mechanisms in composites - Covers different types of accelerated aging tests - Presents theory, modeling, and simulation studies of aged composites and nanocomposites - Looks at recent trends and future possibilities

Book Epoxy Composites

Download or read book Epoxy Composites written by Jyotishkumar Parameswaranpillai and published by John Wiley & Sons. This book was released on 2021-06-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover a one-stop resource for in-depth knowledge on epoxy composites from leading voices in the field Used in a wide variety of materials engineering applications, epoxy composites are highly relevant to the work of engineers and scientists in many fields. Recent developments have allowed for significant advancements in their preparation, processing and characterization that are highly relevant to the aerospace and automobile industry, among others. In Epoxy Composites: Fabrication, Characterization and Applications, a distinguished team of authors and editors deliver a comprehensive and straightforward summary of the most recent developments in the area of epoxy composites. The book emphasizes their preparation, characterization and applications, providing a complete understanding of the correlation of rheology, cure reaction, morphology, and thermo-mechanical properties with filler dispersion. Readers will learn about a variety of topics on the cutting-edge of epoxy composite fabrication and characterization, including smart epoxy composites, theoretical modeling, recycling and environmental issues, safety issues, and future prospects for these highly practical materials. Readers will also benefit from the inclusion of: A thorough introduction to epoxy composites, their synthesis and manufacturing, and micro- and nano-scale structure formation in epoxy and clay nanocomposites An exploration of long fiber reinforced epoxy composites and eco-friendly epoxy-based composites Practical discussions of the processing of epoxy composites based on carbon nanomaterials and the thermal stability and flame retardancy of epoxy composites An analysis of the spectroscopy and X-ray scattering studies of epoxy composites Perfect for materials scientists, polymer chemists, and mechanical engineers, Epoxy Composites: Fabrication, Characterization and Applications will also earn a place in the libraries of engineering scientists working in industry and process engineers seeking a comprehensive and exhaustive resource on epoxy composites.

Book Reinforced Concrete Design with FRP Composites

Download or read book Reinforced Concrete Design with FRP Composites written by Hota V.S. GangaRao and published by CRC Press. This book was released on 2006-11-20 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the use of composites has increased in many industrial, commercial, medical, and defense applications, there is a lack of technical literature that examines composites in conjunction with concrete construction. Fulfilling the need for a comprehensive, explicit guide, Reinforced Concrete Design with FRP Composites presents specific informat

Book Fatigue Behaviour of Fiber Reinforced Polymers

Download or read book Fatigue Behaviour of Fiber Reinforced Polymers written by Yao Weixing and published by DEStech Publications, Inc. This book was released on 2012 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book is organized around new experiments in and modeling of fatigue and its effects over a range of composite materials subjected to multiple mechanical and thermal stresses. An objective of the investigations discussed is to explain failure mechanisms and improve long-term loading prediction and performance.

Book

    Book Details:
  • Author :
  • Publisher : World Scientific
  • Release :
  • ISBN :
  • Pages : 771 pages

Download or read book written by and published by World Scientific. This book was released on with total page 771 pages. Available in PDF, EPUB and Kindle. Book excerpt: