Download or read book Loglinear Models with Latent Variables written by Jacques A. Hagenaars and published by SAGE. This book was released on 1993-08-09 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years the loglinear model has become the dominant form of categorical data analysis as researchers have expanded it into new directions. This book shows researchers the applications of one of these new developments - how uniting ordinary loglinear analysis and latent class analysis into a general loglinear model with latent variables can result in a modified LISREL approach. This modified LISREL model will enable researchers to analyze categorical data in the same way that they have been able to use LISREL to analyze continuous data.
Download or read book Log Linear Models for Event Histories written by Jeroen K. Vermunt and published by SAGE Publications, Incorporated. This book was released on 1997-05-13 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Event history analysis has been a useful method in the social sciences for studying the processes of social change. However, a main difficulty in using this technique is to observe all relevant explanatory variables without missing any variables. This book presents a general approach to missing data problems in event history analysis which is based on the similarities between log-linear models, hazard models and event history models. It begins with a discussion of log-rate models, modified path models and methods for obtaining maximum likelihood estimates of the parameters of log-linear models. The author then shows how to incorporate variables with missing information in log-linear models - including latent class models, m
Download or read book Structural Equations with Latent Variables written by Kenneth A. Bollen and published by John Wiley & Sons. This book was released on 2014-08-28 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis of Ordinal Categorical Data Alan Agresti Statistical Science Now has its first coordinated manual of methods for analyzing ordered categorical data. This book discusses specialized models that, unlike standard methods underlying nominal categorical data, efficiently use the information on ordering. It begins with an introduction to basic descriptive and inferential methods for categorical data, and then gives thorough coverage of the most current developments, such as loglinear and logit models for ordinal data. Special emphasis is placed on interpretation and application of methods and contains an integrated comparison of the available strategies for analyzing ordinal data. This is a case study work with illuminating examples taken from across the wide spectrum of ordinal categorical applications. 1984 (0 471-89055-3) 287 pp. Regression Diagnostics Identifying Influential Data and Sources of Collinearity David A. Belsley, Edwin Kuh and Roy E. Welsch This book provides the practicing statistician and econometrician with new tools for assessing the quality and reliability of regression estimates. Diagnostic techniques are developed that aid in the systematic location of data points that are either unusual or inordinately influential; measure the presence and intensity of collinear relations among the regression data and help to identify the variables involved in each; and pinpoint the estimated coefficients that are potentially most adversely affected. The primary emphasis of these contributions is on diagnostics, but suggestions for remedial action are given and illustrated. 1980 (0 471-05856-4) 292 pp. Applied Regression Analysis Second Edition Norman Draper and Harry Smith Featuring a significant expansion of material reflecting recent advances, here is a complete and up-to-date introduction to the fundamentals of regression analysis, focusing on understanding the latest concepts and applications of these methods. The authors thoroughly explore the fitting and checking of both linear and nonlinear regression models, using small or large data sets and pocket or high-speed computing equipment. Features added to this Second Edition include the practical implications of linear regression; the Durbin-Watson test for serial correlation; families of transformations; inverse, ridge, latent root and robust regression; and nonlinear growth models. Includes many new exercises and worked examples. 1981 (0 471-02995-5) 709 pp.
Download or read book Longitudinal Research with Latent Variables written by Kees van Montfort and published by Springer Science & Business Media. This book was released on 2010-05-17 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since Charles Spearman published his seminal paper on factor analysis in 1904 and Karl Joresk ̈ og replaced the observed variables in an econometric structural equation model by latent factors in 1970, causal modelling by means of latent variables has become the standard in the social and behavioural sciences. Indeed, the central va- ables that social and behavioural theories deal with, can hardly ever be identi?ed as observed variables. Statistical modelling has to take account of measurement - rors and invalidities in the observed variables and so address the underlying latent variables. Moreover, during the past decades it has been widely agreed on that serious causal modelling should be based on longitudinal data. It is especially in the ?eld of longitudinal research and analysis, including panel research, that progress has been made in recent years. Many comprehensive panel data sets as, for example, on human development and voting behaviour have become available for analysis. The number of publications based on longitudinal data has increased immensely. Papers with causal claims based on cross-sectional data only experience rejection just for that reason.
Download or read book Latent Variables Analysis written by Alexander von Eye and published by SAGE Publications, Incorporated. This book was released on 1994-09 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, leading researchers examine how latent variables can be incorporated in a variety of data-analysis strategies, such as structural equation modelling, regression analysis, log-linear modelling and prediction analysis. The contributors also discuss how latent variables analysis can be applied in developmental psychology research using methods such as cohort-time of measurement-age analysis, log-linear modelling of behaviour genetics hypothesis and analyses of repeatedly observed state measures. Detailed explanations of computations and software packages are included with each statistical method.
Download or read book Handbook of Latent Variable and Related Models written by and published by Elsevier. This book was released on 2011-08-11 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
Download or read book Applied Latent Class Analysis written by Jacques A. Hagenaars and published by Cambridge University Press. This book was released on 2002-06-24 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Latent Class Analysis introduces several innovations in latent class analysis to a wider audience of researchers. Many of the world's leading innovators in the field of latent class analysis contributed essays to this volume, each presenting a key innovation to the basic latent class model and illustrating how it can prove useful in situations typically encountered in actual research.
Download or read book Statistical Modelling for Social Researchers written by Roger Tarling and published by Routledge. This book was released on 2008-09-16 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces social researchers to all aspects of statistical modelling in an easily accessible but informative way. A website will accompany the book which will provide additional information and exercises. It is the first text to introduce the social researcher to the principles of statistical modelling and to the full range of methods available. This book describes in words rather than mathematical notation the aims and principles of statistical modelling but helpfully remains fully comprehensive.
Download or read book Latent Class and Discrete Latent Trait Models written by Ton Heinen and published by SAGE Publications, Incorporated. This book was released on 1996-04-24 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition, he reviews log-linear models, latent trait models, and a number of restricted latent class models in detail as well as for the estimation of parameters for these models.
Download or read book Analysis of Change written by Uwe Engel and published by Walter de Gruyter. This book was released on 2012-05-07 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Categorical Variables in Developmental Research written by Alexander von Eye and published by Elsevier. This book was released on 1996-02-05 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Categorical Variables in Developmental Research provides developmental researchers with the basic tools for understanding how to utilize categorical variables in their data analysis. Covering the measurement of individual differences in growth rates, the measurement of stage transitions, latent class and log-linear models, chi-square, and more, the book provides a means for developmental researchers to make use of categorical data. - Measurement and repeated observations of categorical data - Catastrophe theory - Latent class and log-linear models - Applications
Download or read book Regression Models for Categorical and Limited Dependent Variables written by J. Scott Long and published by SAGE. This book was released on 1997-01-09 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.
Download or read book Advances in Latent Variable Mixture Models written by Gregory R. Hancock and published by IAP. This book was released on 2007-11-01 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current volume, Advances in Latent Variable Mixture Models, contains chapters by all of the speakers who participated in the 2006 CILVR conference, providing not just a snapshot of the event, but more importantly chronicling the state of the art in latent variable mixture model research. The volume starts with an overview chapter by the CILVR conference keynote speaker, Bengt Muthén, offering a “lay of the land” for latent variable mixture models before the volume moves to more specific constellations of topics. Part I, Multilevel and Longitudinal Systems, deals with mixtures for data that are hierarchical in nature either due to the data’s sampling structure or to the repetition of measures (of varied types) over time. Part II, Models for Assessment and Diagnosis, addresses scenarios for making judgments about individuals’ state of knowledge or development, and about the instruments used for making such judgments. Finally, Part III, Challenges in Model Evaluation, focuses on some of the methodological issues associated with the selection of models most accurately representing the processes and populations under investigation. It should be stated that this volume is not intended to be a first exposure to latent variable methods. Readers lacking such foundational knowledge are encouraged to consult primary and/or secondary didactic resources in order to get the most from the chapters in this volume. Once armed with the basic understanding of latent variable methods, we believe readers will find this volume incredibly exciting.
Download or read book Handbook of Statistical Modeling for the Social and Behavioral Sciences written by G. Arminger and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.
Download or read book Marginal Models written by Wicher Bergsma and published by Springer Science & Business Media. This book was released on 2009-04-03 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Marginal Models for Dependent, Clustered, and Longitudinal Categorical Data provides a comprehensive overview of the basic principles of marginal modeling and offers a wide range of possible applications. Marginal models are often the best choice for answering important research questions when dependent observations are involved, as the many real world examples in this book show. In the social, behavioral, educational, economic, and biomedical sciences, data are often collected in ways that introduce dependencies in the observations to be compared. For example, the same respondents are interviewed at several occasions, several members of networks or groups are interviewed within the same survey, or, within families, both children and parents are investigated. Statistical methods that take the dependencies in the data into account must then be used, e.g., when observations at time one and time two are compared in longitudinal studies. At present, researchers almost automatically turn to multi-level models or to GEE estimation to deal with these dependencies. Despite the enormous potential and applicability of these recent developments, they require restrictive assumptions on the nature of the dependencies in the data. The marginal models of this book provide another way of dealing with these dependencies, without the need for such assumptions, and can be used to answer research questions directly at the intended marginal level. The maximum likelihood method, with its attractive statistical properties, is used for fitting the models. This book has mainly been written with applied researchers in mind. It includes many real world examples, explains the types of research questions for which marginal modeling is useful, and provides a detailed description of how to apply marginal models for a great diversity of research questions. All these examples are presented on the book's website (www.cmm.st), along with user friendly programs.
Download or read book Log Linear Models written by David Knoke and published by SAGE. This book was released on 1980-08 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relationships in crosstabulations. The log-linear model. Testing for fit. Applications to substantive problems. Special techniques with log-linear models.
Download or read book New Developments in Categorical Data Analysis for the Social and Behavioral Sciences written by L. Andries van der Ark and published by Psychology Press. This book was released on 2005-01-15 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Categorical data are quantified as either nominal variables--distinguishing different groups, for example, based on socio-economic status, education, and political persuasion--or ordinal variables--distinguishing levels of interest, such as the preferred politician or the preferred type of punishment for committing burglary. This new book is a collection of up-to-date studies on modern categorical data analysis methods, emphasizing their application to relevant and interesting data sets. This volume concentrates on latent class analysis and item response theory. These methods use latent variables to explain the relationships among observed categorical variables. Latent class analysis yields the classification of a group of respondents according to their pattern of scores on the categorical variables. This provides insight into the mechanisms producing the data and allows the estimation of factor structures and regression models conditional on the latent class structure. Item response theory leads to the identification of one or more ordinal or interval scales. In psychological and educational testing these scales are used for individual measurement of abilities and personality traits. The focus of this volume is applied. After a method is explained, the potential of the method for analyzing categorical data is illustrated by means of a real data example to show how it can be used effectively for solving a real data problem. These methods are accessible to researchers not trained explicitly in applied statistics. This volume appeals to researchers and advanced students in the social and behavioral sciences, including social, developmental, organizational, clinical and health psychologists, sociologists, educational and marketing researchers, and political scientists. In addition, it is of interest to those who collect data on categorical variables and are faced with the problem of how to analyze such variables--among themselves or in relation to metric variables.