EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

Download or read book Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-20 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh. Yan, Jue and Shu, Chi-Wang and Bushnell, Dennis M. (Technical Monitor) Langley Research Center NASA/CR-2002-211959, NAS 1.26:211959, ICASE-2002-42

Book Discontinuous Galerkin Methods

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Book Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

Download or read book Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives written by Jue Yan and published by . This book was released on 2002 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we review the existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L2 stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.

Book Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations

Download or read book Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations written by Xiaobing Feng and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a particular theme or direction of current research. Derived from the 2012 Barrett Lectures at the University of Tennessee, the papers reflect the state of the field today and point toward possibilities for future inquiry. The longer survey lectures, delivered by Franco Brezzi and Chi-Wang Shu, respectively, focus on theoretical aspects of discontinuous Galerkin methods for elliptic and evolution problems. Other papers apply DG methods to cases involving radiative transport equations, error estimates, and time-discrete higher order ALE functions, among other areas. Combining focused case studies with longer sections of expository discussion, this book will be an indispensable reference for researchers and students working with discontinuous Galerkin finite element methods and its applications.

Book Nonlinear Diffusion Problems

Download or read book Nonlinear Diffusion Problems written by Odo Diekmann and published by . This book was released on 1976 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nodal Discontinuous Galerkin Methods

Download or read book Nodal Discontinuous Galerkin Methods written by Jan S. Hesthaven and published by Springer Science & Business Media. This book was released on 2007-12-20 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.

Book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 written by Robert M. Kirby and published by Springer. This book was released on 2015-11-26 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.

Book Numerical Solutions of Partial Differential Equations

Download or read book Numerical Solutions of Partial Differential Equations written by Silvia Bertoluzza and published by Springer Science & Business Media. This book was released on 2009-03-13 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.

Book Runge Kutta Discontinuous Galerkin Methods for Convection dominated Problems

Download or read book Runge Kutta Discontinuous Galerkin Methods for Convection dominated Problems written by Bernardo Cockburn and published by . This book was released on 2000 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Two Point Boundary Value Problems  Lower and Upper Solutions

Download or read book Two Point Boundary Value Problems Lower and Upper Solutions written by C. De Coster and published by Elsevier. This book was released on 2006-03-21 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes

Book Analytical and Numerical Methods for Volterra Equations

Download or read book Analytical and Numerical Methods for Volterra Equations written by Peter Linz and published by SIAM. This book was released on 1985-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.

Book Building Bridges  Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations

Download or read book Building Bridges Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations written by Gabriel R. Barrenechea and published by Springer. This book was released on 2016-10-03 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains contributed survey papers from the main speakers at the LMS/EPSRC Symposium “Building bridges: connections and challenges in modern approaches to numerical partial differential equations”. This meeting took place in July 8-16, 2014, and its main purpose was to gather specialists in emerging areas of numerical PDEs, and explore the connections between the different approaches. The type of contributions ranges from the theoretical foundations of these new techniques, to the applications of them, to new general frameworks and unified approaches that can cover one, or more than one, of these emerging techniques.

Book Differential Equations

    Book Details:
  • Author : Terry E. Moschandreou
  • Publisher : BoD – Books on Demand
  • Release : 2018-05-23
  • ISBN : 1789231566
  • Pages : 184 pages

Download or read book Differential Equations written by Terry E. Moschandreou and published by BoD – Books on Demand. This book was released on 2018-05-23 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: The editor has incorporated contributions from a diverse group of leading researchers in the field of differential equations. This book aims to provide an overview of the current knowledge in the field of differential equations. The main subject areas are divided into general theory and applications. These include fixed point approach to solution existence of differential equations, existence theory of differential equations of arbitrary order, topological methods in the theory of ordinary differential equations, impulsive fractional differential equations with finite delay and integral boundary conditions, an extension of Massera's theorem for n-dimensional stochastic differential equations, phase portraits of cubic dynamic systems in a Poincare circle, differential equations arising from the three-variable Hermite polynomials and computation of their zeros and reproducing kernel method for differential equations. Applications include local discontinuous Galerkin method for nonlinear Ginzburg-Landau equation, general function method in transport boundary value problems of theory of elasticity and solution of nonlinear partial differential equations by new Laplace variational iteration method. Existence/uniqueness theory of differential equations is presented in this book with applications that will be of benefit to mathematicians, applied mathematicians and researchers in the field. The book is written primarily for those who have some knowledge of differential equations and mathematical analysis. The authors of each section bring a strong emphasis on theoretical foundations to the book.

Book Implementing Spectral Methods for Partial Differential Equations

Download or read book Implementing Spectral Methods for Partial Differential Equations written by David A. Kopriva and published by Springer Science & Business Media. This book was released on 2009-05-27 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.

Book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 written by Marco L. Bittencourt and published by Springer. This book was released on 2017-11-07 with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.

Book Nodal Discontinuous Galerkin Methods

Download or read book Nodal Discontinuous Galerkin Methods written by Jan S. Hesthaven and published by Springer Science & Business Media. This book was released on 2007-12-18 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.

Book Numerical Methods

    Book Details:
  • Author : George Em Karniadakis
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2019-04-15
  • ISBN : 3110571684
  • Pages : 360 pages

Download or read book Numerical Methods written by George Em Karniadakis and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-04-15 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This third volume collects authoritative chapters covering several numerical aspects of fractional calculus, including time and space fractional derivatives, finite differences and finite elements, and spectral, meshless, and particle methods.