EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Local Bifurcations  Center Manifolds  and Normal Forms in Infinite Dimensional Dynamical Systems

Download or read book Local Bifurcations Center Manifolds and Normal Forms in Infinite Dimensional Dynamical Systems written by Mariana Haragus and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.

Book Patterns of Dynamics

Download or read book Patterns of Dynamics written by Pavel Gurevich and published by Springer. This book was released on 2018-02-07 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical advances in dynamical-systems theory and their applications to pattern-forming processes in the sciences and engineering are discussed in this volume that resulted from the conference Patterns in Dynamics held in honor of Bernold Fiedler, in Berlin, July 25-29, 2016.The contributions build and develop mathematical techniques, and use mathematical approaches for prediction and control of complex systems. The underlying mathematical theories help extract structures from experimental observations and, conversely, shed light on the formation, dynamics, and control of spatio-temporal patterns in applications. Theoretical areas covered include geometric analysis, spatial dynamics, spectral theory, traveling-wave theory, and topological data analysis; also discussed are their applications to chemotaxis, self-organization at interfaces, neuroscience, and transport processes.

Book Elements of Applied Bifurcation Theory

Download or read book Elements of Applied Bifurcation Theory written by Yuri Kuznetsov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Book Recent Trends in Dynamical Systems

Download or read book Recent Trends in Dynamical Systems written by Andreas Johann and published by Springer Science & Business Media. This book was released on 2013-09-24 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of a conference on dynamical systems held in honor of Jürgen Scheurle in January 2012. Through both original research papers and survey articles leading experts in the field offer overviews of the current state of the theory and its applications to mechanics and physics. In particular, the following aspects of the theory of dynamical systems are covered: - Stability and bifurcation - Geometric mechanics and control theory - Invariant manifolds, attractors and chaos - Fluid mechanics and elasticity - Perturbations and multiscale problems - Hamiltonian dynamics and KAM theory Researchers and graduate students in dynamical systems and related fields, including engineering, will benefit from the articles presented in this volume.

Book Applied Mathematics and Scientific Computing

Download or read book Applied Mathematics and Scientific Computing written by B. Rushi Kumar and published by Springer. This book was released on 2019-02-01 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first of two containing selected papers from the International Conference on Advances in Mathematical Sciences (ICAMS), held at the Vellore Institute of Technology in December 2017. This meeting brought together researchers from around the world to share their work, with the aim of promoting collaboration as a means of solving various problems in modern science and engineering. The authors of each chapter present a research problem, techniques suitable for solving it, and a discussion of the results obtained. These volumes will be of interest to both theoretical- and application-oriented individuals in academia and industry. Papers in Volume I are dedicated to active and open areas of research in algebra, analysis, operations research, and statistics, and those of Volume II consider differential equations, fluid mechanics, and graph theory.

Book Bifurcation Theory of Impulsive Dynamical Systems

Download or read book Bifurcation Theory of Impulsive Dynamical Systems written by Kevin E.M. Church and published by Springer Nature. This book was released on 2021-03-24 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents the most recent progress in bifurcation theory of impulsive dynamical systems with time delays and other functional dependence. It covers not only smooth local bifurcations, but also some non-smooth bifurcation phenomena that are unique to impulsive dynamical systems. The monograph is split into four distinct parts, independently addressing both finite and infinite-dimensional dynamical systems before discussing their applications. The primary contributions are a rigorous nonautonomous dynamical systems framework and analysis of nonlinear systems, stability, and invariant manifold theory. Special attention is paid to the centre manifold and associated reduction principle, as these are essential to the local bifurcation theory. Specifying to periodic systems, the Floquet theory is extended to impulsive functional differential equations, and this permits an exploration of the impulsive analogues of saddle-node, transcritical, pitchfork and Hopf bifurcations. Readers will learn how techniques of classical bifurcation theory extend to impulsive functional differential equations and, as a special case, impulsive differential equations without delays. They will learn about stability for fixed points, periodic orbits and complete bounded trajectories, and how the linearization of the dynamical system allows for a suitable definition of hyperbolicity. They will see how to complete a centre manifold reduction and analyze a bifurcation at a nonhyperbolic steady state.

Book Smooth Invariant Manifolds And Normal Forms

Download or read book Smooth Invariant Manifolds And Normal Forms written by Alexander Kopanskii and published by World Scientific. This book was released on 1994-12-22 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the qualitative theory of dynamical systems and is devoted to the study of flows and cascades in the vicinity of a smooth invariant manifold. Its main purpose is to present, as completely as possible, the basic results concerning the existence of stable and unstable local manifolds and the recent advancements in the theory of finitely smooth normal forms of vector fields and diffeomorphisms in the vicinity of a rest point and a periodic trajectory. A summary of the results obtained so far in the investigation of dynamical systems near an arbitrary invariant submanifold is also given.

Book Stochastic Parameterizing Manifolds and Non Markovian Reduced Equations

Download or read book Stochastic Parameterizing Manifolds and Non Markovian Reduced Equations written by Mickaël D. Chekroun and published by Springer. This book was released on 2014-12-23 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

Book Numerical Bifurcation Analysis for Reaction Diffusion Equations

Download or read book Numerical Bifurcation Analysis for Reaction Diffusion Equations written by Zhen Mei and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Many examples and figures illustrate analysis of bifurcation scenario and implementation of numerical schemes. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.

Book Bifurcation Theory

    Book Details:
  • Author : Hansjörg Kielhöfer
  • Publisher : Springer Science & Business Media
  • Release : 2011-11-13
  • ISBN : 1461405025
  • Pages : 406 pages

Download or read book Bifurcation Theory written by Hansjörg Kielhöfer and published by Springer Science & Business Media. This book was released on 2011-11-13 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations. The second edition is substantially and formally revised and new material is added. Among this is bifurcation with a two-dimensional kernel with applications, the buckling of the Euler rod, the appearance of Taylor vortices, the singular limit process of the Cahn-Hilliard model, and an application of this method to more complicated nonconvex variational problems.

Book Model Emergent Dynamics in Complex Systems

Download or read book Model Emergent Dynamics in Complex Systems written by A. J. Roberts and published by SIAM. This book was released on 2014-12-18 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arising out of the growing interest in and applications of modern dynamical systems theory, this book explores how to derive relatively simple dynamical equations that model complex physical interactions. The author?s objectives are to use sound theory to explore algebraic techniques, develop interesting applications, and discover general modeling principles. Model Emergent Dynamics in Complex Systems unifies into one powerful and coherent approach the many varied extant methods for mathematical model reduction and approximation. Using mathematical models at various levels of resolution and complexity, the book establishes the relationships between such multiscale models and clarifying difficulties and apparent paradoxes and addresses model reduction for systems, resolves initial conditions, and illuminates control and uncertainty. The basis for the author?s methodology is the theory and the geometric picture of both coordinate transforms and invariant manifolds in dynamical systems; in particular, center and slow manifolds are heavily used. The wonderful aspect of this approach is the range of geometric interpretations of the modeling process that it produces?simple geometric pictures inspire sound methods of analysis and construction. Further, pictures drawn of state spaces also provide a route to better assess a model?s limitations and strengths. Geometry and algebra form a powerful partnership and coordinate transforms and manifolds provide a powerfully enhanced and unified view of a swathe of other complex system modeling methodologies such as averaging, homogenization, multiple scales, singular perturbations, two timing, and WKB theory.

Book PDE Dynamics

    Book Details:
  • Author : Christian Kuehn
  • Publisher : SIAM
  • Release : 2019-04-10
  • ISBN : 1611975662
  • Pages : 267 pages

Download or read book PDE Dynamics written by Christian Kuehn and published by SIAM. This book was released on 2019-04-10 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research. PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines. Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.

Book Theory  Numerics and Applications of Hyperbolic Problems II

Download or read book Theory Numerics and Applications of Hyperbolic Problems II written by Christian Klingenberg and published by Springer. This book was released on 2018-06-27 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Book Higher Order Dynamic Mode Decomposition and Its Applications

Download or read book Higher Order Dynamic Mode Decomposition and Its Applications written by Jose Manuel Vega and published by Academic Press. This book was released on 2020-09-22 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher Order Dynamic Mode Decomposition and Its Applications provides detailed background theory, as well as several fully explained applications from a range of industrial contexts to help readers understand and use this innovative algorithm. Data-driven modelling of complex systems is a rapidly evolving field, which has applications in domains including engineering, medical, biological, and physical sciences, where it is providing ground-breaking insights into complex systems that exhibit rich multi-scale phenomena in both time and space. Starting with an introductory summary of established order reduction techniques like POD, DEIM, Koopman, and DMD, this book proceeds to provide a detailed explanation of higher order DMD, and to explain its advantages over other methods. Technical details of how the HODMD can be applied to a range of industrial problems will help the reader decide how to use the method in the most appropriate way, along with example MATLAB codes and advice on how to analyse and present results. - Includes instructions for the implementation of the HODMD, MATLAB codes, and extended discussions of the algorithm - Includes descriptions of other order reduction techniques, and compares their strengths and weaknesses - Provides examples of applications involving complex flow fields, in contexts including aerospace engineering, geophysical flows, and wind turbine design

Book Hyperbolic and Kinetic Models for Self organised Biological Aggregations

Download or read book Hyperbolic and Kinetic Models for Self organised Biological Aggregations written by Raluca Eftimie and published by Springer. This book was released on 2019-01-07 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the spatio-temporal patterns generated by two classes of mathematical models (of hyperbolic and kinetic types) that have been increasingly used in the past several years to describe various biological and ecological communities. Here we combine an overview of various modelling approaches for collective behaviours displayed by individuals/cells/bacteria that interact locally and non-locally, with analytical and numerical mathematical techniques that can be used to investigate the spatio-temporal patterns produced by said individuals/cells/bacteria. Richly illustrated, the book offers a valuable guide for researchers new to the field, and is also suitable as a textbook for senior undergraduate or graduate students in mathematics or related disciplines.

Book Language  Syntax  and the Natural Sciences

Download or read book Language Syntax and the Natural Sciences written by Ángel J. Gallego and published by Cambridge University Press. This book was released on 2018-10-18 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Language, apart from its cultural and social dimension, has a scientific side that is connected not only to the study of 'grammar' in a more or less traditional sense, but also to disciplines like mathematics, physics, chemistry and biology. This book explores developments in linguistic theory, looking in particular at the theory of generative grammar from the perspective of the natural sciences. It highlights the complex and dynamic nature of language, suggesting that a comprehensive and full understanding of such a species-specific property will only be achieved through interdisciplinary work.

Book Complexity Science  An Introduction

Download or read book Complexity Science An Introduction written by Peletier Mark A and published by World Scientific. This book was released on 2019-03-20 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on complexity science comprises a collection of chapters on methods and principles from a wide variety of disciplinary fields — from physics and chemistry to biology and the social sciences.In this two-part volume, the first part is a collection of chapters introducing different aspects in a coherent fashion, and providing a common basis and the founding principles of the different complexity science approaches; the next provides deeper discussions of the different methods of use in complexity science, with interesting illustrative applications.The fundamental topics deal with self-organization, pattern formation, forecasting uncertainties, synchronization and revolutionary change, self-adapting and self-correcting systems, and complex networks. Examples are taken from biology, chemistry, engineering, epidemiology, robotics, economics, sociology, and neurology.