Download or read book Building LLM Powered Applications written by Valentina Alto and published by Packt Publishing Ltd. This book was released on 2024-05-22 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get hands-on with GPT 3.5, GPT 4, LangChain, Llama 2, Falcon LLM and more, to build LLM-powered sophisticated AI applications Key Features Embed LLMs into real-world applications Use LangChain to orchestrate LLMs and their components within applications Grasp basic and advanced techniques of prompt engineering Book DescriptionBuilding LLM Powered Applications delves into the fundamental concepts, cutting-edge technologies, and practical applications that LLMs offer, ultimately paving the way for the emergence of large foundation models (LFMs) that extend the boundaries of AI capabilities. The book begins with an in-depth introduction to LLMs. We then explore various mainstream architectural frameworks, including both proprietary models (GPT 3.5/4) and open-source models (Falcon LLM), and analyze their unique strengths and differences. Moving ahead, with a focus on the Python-based, lightweight framework called LangChain, we guide you through the process of creating intelligent agents capable of retrieving information from unstructured data and engaging with structured data using LLMs and powerful toolkits. Furthermore, the book ventures into the realm of LFMs, which transcend language modeling to encompass various AI tasks and modalities, such as vision and audio. Whether you are a seasoned AI expert or a newcomer to the field, this book is your roadmap to unlock the full potential of LLMs and forge a new era of intelligent machines.What you will learn Explore the core components of LLM architecture, including encoder-decoder blocks and embeddings Understand the unique features of LLMs like GPT-3.5/4, Llama 2, and Falcon LLM Use AI orchestrators like LangChain, with Streamlit for the frontend Get familiar with LLM components such as memory, prompts, and tools Learn how to use non-parametric knowledge and vector databases Understand the implications of LFMs for AI research and industry applications Customize your LLMs with fine tuning Learn about the ethical implications of LLM-powered applications Who this book is for Software engineers and data scientists who want hands-on guidance for applying LLMs to build applications. The book will also appeal to technical leaders, students, and researchers interested in applied LLM topics. We don’t assume previous experience with LLM specifically. But readers should have core ML/software engineering fundamentals to understand and apply the content.
Download or read book Developing Apps with GPT 4 and ChatGPT written by Olivier Caelen and published by "O'Reilly Media, Inc.". This book was released on 2024-07-10 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an ideal guide for Python developers who want to learn how to build applications with large language models. Authors Olivier Caelen and Marie-Alice Blete cover the main features and benefits of GPT-4 and GPT-3.5 models and explain how they work. You'll also get a step-by-step guide for developing applications using the OpenAI Python library, including text generation, Q&A, and smart assistants. Written in clear and concise language, Developing Apps with GPT-4 and ChatGPT includes easy-to-follow examples to help you understand and apply the concepts to your projects. Python code examples are available in a GitHub repository, and the book includes a glossary of key terms. Ready to harness the power of large language models in your applications? This book is a must. You'll learn: Fundamentals and benefits of GPT-4 and GPT-3.5 models, including the main features and how they work How to integrate these models into Python-based applications, leveraging natural language processing capabilities and overcoming specific LLM-related challenges Examples of applications demonstrating the OpenAI API in Python for tasks including text generation, question answering, content summarization, classification, and more Advanced LLM topics such as prompt engineering, fine-tuning models for specific tasks, RAG, plug-ins, LangChain, LlamaIndex, GPTs, and assistants Olivier Caelen is a machine learning researcher at Worldline and teaches machine learning courses at the University of Brussels. Marie-Alice Blete, a software architect and data engineer in Worldline's R&D department, is interested in performance and latency issues associated with AI solutions.
Download or read book Building Generative AI Powered Apps written by Aarushi Kansal and published by Springer Nature. This book was released on with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Building Intelligent Applications with Generative AI written by Yattish Ramhorry and published by BPB Publications. This book was released on 2024-08-22 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: DESCRIPTION Building Intelligent Applications with Generative AI is a comprehensive guide that unlocks the power of generative AI for building cutting-edge applications. This book covers a wide range of use cases and practical examples, from text generation and conversational agents to creative media generation and code completion. These examples are designed to help you capitalize on the potential of generative AI in your applications. Through clear explanations, step-by-step tutorials, and real-world case studies, you will learn how to prepare data and train generative AI models. You will also explore different generative AI techniques, including large language models like GPT-4, ChatGPT, Llama 2, and Google’s Gemini, to understand how they can be applied in various domains, such as content generation, virtual assistants, and code generation. With a focus on practical implementation, this book also examines ethical considerations, best practices, and future trends in generative AI. Further, this book concludes by exploring ethical considerations and best practices for building responsible GAI applications, ensuring you are harnessing this technology for good. By the end of this book, you will be well-equipped to leverage the power of GAI to build intelligent applications and unleash your creativity in innovative ways. KEY FEATURES ● Learn the fundamentals of generative AI and the practical usage of prompt engineering. ● Gain hands-on experience in building generative AI applications. ● Learn to use tools like LangChain, LangSmith, and FlowiseAI to create intelligent applications and AI chatbots. WHAT YOU WILL LEARN ● Understand generative AI (GAI) and large language models (LLMs). ● Explore real-world GAI applications across industries. ● Build intelligent applications with the ChatGPT API. ● Explore retrieval augmented generation with LangChain and Gemini Pro. ● Create chatbots with LangChain and Streamlit for data retrieval. WHO THIS BOOK IS FOR This book is for developers, data scientists, AI practitioners, and tech enthusiasts who are interested in leveraging generative AI techniques to build intelligent applications across various domains. TABLE OF CONTENTS 1. Exploring the World of Generative AI 2. Use Cases for Generative AI Applications 3. Mastering the Art of Prompt Engineering 4. Integrating Generative AI Models into Applications 5. Emerging Trends and the Future of Generative AI 6. Building Intelligent Applications with the ChatGPT API 7. Retrieval Augmented Generation with Gemini Pro 8. Generative AI Applications with Gradio 9. Visualize your Data with LangChain and Streamlit 10. Building LLM Applications with Llama 2 11. Building an AI Document Chatbot with Flowise AI 12. Best Practices for Building Applications with Generative AI 13. Ethical Considerations of Generative AI
Download or read book Demystifying Large Language Models written by James Chen and published by James Chen. This book was released on 2024-04-25 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide aiming to demystify the world of transformers -- the architecture that powers Large Language Models (LLMs) like GPT and BERT. From PyTorch basics and mathematical foundations to implementing a Transformer from scratch, you'll gain a deep understanding of the inner workings of these models. That's just the beginning. Get ready to dive into the realm of pre-training your own Transformer from scratch, unlocking the power of transfer learning to fine-tune LLMs for your specific use cases, exploring advanced techniques like PEFT (Prompting for Efficient Fine-Tuning) and LoRA (Low-Rank Adaptation) for fine-tuning, as well as RLHF (Reinforcement Learning with Human Feedback) for detoxifying LLMs to make them aligned with human values and ethical norms. Step into the deployment of LLMs, delivering these state-of-the-art language models into the real-world, whether integrating them into cloud platforms or optimizing them for edge devices, this section ensures you're equipped with the know-how to bring your AI solutions to life. Whether you're a seasoned AI practitioner, a data scientist, or a curious developer eager to advance your knowledge on the powerful LLMs, this book is your ultimate guide to mastering these cutting-edge models. By translating convoluted concepts into understandable explanations and offering a practical hands-on approach, this treasure trove of knowledge is invaluable to both aspiring beginners and seasoned professionals. Table of Contents 1. INTRODUCTION 1.1 What is AI, ML, DL, Generative AI and Large Language Model 1.2 Lifecycle of Large Language Models 1.3 Whom This Book Is For 1.4 How This Book Is Organized 1.5 Source Code and Resources 2. PYTORCH BASICS AND MATH FUNDAMENTALS 2.1 Tensor and Vector 2.2 Tensor and Matrix 2.3 Dot Product 2.4 Softmax 2.5 Cross Entropy 2.6 GPU Support 2.7 Linear Transformation 2.8 Embedding 2.9 Neural Network 2.10 Bigram and N-gram Models 2.11 Greedy, Random Sampling and Beam 2.12 Rank of Matrices 2.13 Singular Value Decomposition (SVD) 2.14 Conclusion 3. TRANSFORMER 3.1 Dataset and Tokenization 3.2 Embedding 3.3 Positional Encoding 3.4 Layer Normalization 3.5 Feed Forward 3.6 Scaled Dot-Product Attention 3.7 Mask 3.8 Multi-Head Attention 3.9 Encoder Layer and Encoder 3.10 Decoder Layer and Decoder 3.11 Transformer 3.12 Training 3.13 Inference 3.14 Conclusion 4. PRE-TRAINING 4.1 Machine Translation 4.2 Dataset and Tokenization 4.3 Load Data in Batch 4.4 Pre-Training nn.Transformer Model 4.5 Inference 4.6 Popular Large Language Models 4.7 Computational Resources 4.8 Prompt Engineering and In-context Learning (ICL) 4.9 Prompt Engineering on FLAN-T5 4.10 Pipelines 4.11 Conclusion 5. FINE-TUNING 5.1 Fine-Tuning 5.2 Parameter Efficient Fine-tuning (PEFT) 5.3 Low-Rank Adaptation (LoRA) 5.4 Adapter 5.5 Prompt Tuning 5.6 Evaluation 5.7 Reinforcement Learning 5.8 Reinforcement Learning Human Feedback (RLHF) 5.9 Implementation of RLHF 5.10 Conclusion 6. DEPLOYMENT OF LLMS 6.1 Challenges and Considerations 6.2 Pre-Deployment Optimization 6.3 Security and Privacy 6.4 Deployment Architectures 6.5 Scalability and Load Balancing 6.6 Compliance and Ethics Review 6.7 Model Versioning and Updates 6.8 LLM-Powered Applications 6.9 Vector Database 6.10 LangChain 6.11 Chatbot, Example of LLM-Powered Application 6.12 WebUI, Example of LLM-Power Application 6.13 Future Trends and Challenges 6.14 Conclusion REFERENCES ABOUT THE AUTHOR
Download or read book ChatGPT for Conversational AI and Chatbots written by Adrian Thompson and published by Packt Publishing Ltd. This book was released on 2024-07-30 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore ChatGPT technologies to create state-of-the-art chatbots and voice assistants, and prepare to lead the AI revolution Key Features Learn how to leverage ChatGPT to create innovative conversational AI solutions for your organization Harness LangChain and delve into step-by-step LLM application development for conversational AI Gain insights into security, privacy, and the future landscape of large language models and conversational AI Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionChatGPT for Conversational AI and Chatbots is a definitive resource for exploring conversational AI, ChatGPT, and large language models. This book introduces the fundamentals of ChatGPT and conversational AI automation. You’ll explore the application of ChatGPT in conversation design, the use of ChatGPT as a tool to create conversational experiences, and a range of other practical applications. As you progress, you’ll delve into LangChain, a dynamic framework for LLMs, covering topics such as prompt engineering, chatbot memory, using vector stores, and validating responses. Additionally, you’ll learn about creating and using LLM-enabling tools, monitoring and fine tuning, LangChain UI tools such as LangFlow, and the LangChain ecosystem. You’ll also cover popular use cases, such as using ChatGPT in conjunction with your own data. Later, the book focuses on creating a ChatGPT-powered chatbot that can comprehend and respond to queries directly from your unique data sources. The book then guides you through building chatbot UIs with ChatGPT API and some of the tools and best practices available. By the end of this book, you’ll be able to confidently leverage ChatGPT technologies to build conversational AI solutions.What you will learn Gain a solid understanding of ChatGPT and its capabilities and limitations Understand how to use ChatGPT for conversation design Discover how to use advanced LangChain techniques, such as prompting, memory, agents, chains, vector stores, and tools Create a ChatGPT chatbot that can answer questions about your own data Develop a chatbot powered by ChatGPT API Explore the future of conversational AI, LLMs, and ChatGPT alternatives Who this book is for This book is for tech-savvy readers, conversational AI practitioners, engineers, product owners, business analysts, and entrepreneurs wanting to integrate ChatGPT into conversational experiences and explore the possibilities of this game-changing technology. Anyone curious about using internal data with ChatGPT and looking to stay up to date with the developments in large language models will also find this book helpful. Some expertise in coding and standard web design concepts would be useful, along with familiarity with conversational AI terminology, though not essential.
Download or read book LLM Engineer s Handbook written by Paul Iusztin and published by Packt Publishing Ltd. This book was released on 2024-10-22 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step into the world of LLMs with this practical guide that takes you from the fundamentals to deploying advanced applications using LLMOps best practices Key Features Build and refine LLMs step by step, covering data preparation, RAG, and fine-tuning Learn essential skills for deploying and monitoring LLMs, ensuring optimal performance in production Utilize preference alignment, evaluation, and inference optimization to enhance performance and adaptability of your LLM applications Book DescriptionArtificial intelligence has undergone rapid advancements, and Large Language Models (LLMs) are at the forefront of this revolution. This LLM book offers insights into designing, training, and deploying LLMs in real-world scenarios by leveraging MLOps best practices. The guide walks you through building an LLM-powered twin that’s cost-effective, scalable, and modular. It moves beyond isolated Jupyter notebooks, focusing on how to build production-grade end-to-end LLM systems. Throughout this book, you will learn data engineering, supervised fine-tuning, and deployment. The hands-on approach to building the LLM Twin use case will help you implement MLOps components in your own projects. You will also explore cutting-edge advancements in the field, including inference optimization, preference alignment, and real-time data processing, making this a vital resource for those looking to apply LLMs in their projects. By the end of this book, you will be proficient in deploying LLMs that solve practical problems while maintaining low-latency and high-availability inference capabilities. Whether you are new to artificial intelligence or an experienced practitioner, this book delivers guidance and practical techniques that will deepen your understanding of LLMs and sharpen your ability to implement them effectively.What you will learn Implement robust data pipelines and manage LLM training cycles Create your own LLM and refine it with the help of hands-on examples Get started with LLMOps by diving into core MLOps principles such as orchestrators and prompt monitoring Perform supervised fine-tuning and LLM evaluation Deploy end-to-end LLM solutions using AWS and other tools Design scalable and modularLLM systems Learn about RAG applications by building a feature and inference pipeline Who this book is for This book is for AI engineers, NLP professionals, and LLM engineers looking to deepen their understanding of LLMs. Basic knowledge of LLMs and the Gen AI landscape, Python and AWS is recommended. Whether you are new to AI or looking to enhance your skills, this book provides comprehensive guidance on implementing LLMs in real-world scenarios
Download or read book Transforming Conversational AI written by Michael McTear and published by Springer Nature. This book was released on with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Building AI Intensive Python Applications written by Rachelle Palmer and published by Packt Publishing Ltd. This book was released on 2024-09-06 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps Key Features Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks Implement effective retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance and accuracy with model compression and deployment optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications. The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You’ll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn Understand the architecture and components of the generative AI stack Explore the role of vector databases in enhancing AI applications Master Python frameworks for AI development Implement Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common failures and challenges in AI development Who this book is for This book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.
Download or read book A Beginner s Guide to Large Language Models written by Enamul Haque and published by Enamul Haque. This book was released on 2024-07-25 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Beginner's Guide to Large Language Models: Conversational AI for Non-Technical Enthusiasts Step into the revolutionary world of artificial intelligence with "A Beginner's Guide to Large Language Models: Conversational AI for Non-Technical Enthusiasts." Whether you're a curious individual or a professional seeking to leverage AI in your field, this book demystifies the complexities of large language models (LLMs) with engaging, easy-to-understand explanations and practical insights. Explore the fascinating journey of AI from its early roots to the cutting-edge advancements that power today's conversational AI systems. Discover how LLMs, like ChatGPT and Google's Gemini, are transforming industries, enhancing productivity, and sparking creativity across the globe. With the guidance of this comprehensive and accessible guide, you'll gain a solid understanding of how LLMs work, their real-world applications, and the ethical considerations they entail. Packed with vivid examples, hands-on exercises, and real-life scenarios, this book will empower you to harness the full potential of LLMs. Learn to generate creative content, translate languages in real-time, summarise complex information, and even develop AI-powered applications—all without needing a technical background. You'll also find valuable insights into the evolving job landscape, equipping you with the knowledge to pursue a successful career in this dynamic field. This guide ensures that AI is not just an abstract concept but a tangible tool you can use to transform your everyday life and work. Dive into the future with confidence and curiosity, and discover the incredible possibilities that large language models offer. Join the AI revolution and unlock the secrets of the technology that's reshaping our world. "A Beginner's Guide to Large Language Models" is your key to understanding and mastering the power of conversational AI. Introduction This introduction sets the stage for understanding the evolution of artificial intelligence (AI) and large language models (LLMs). It highlights the promise of making complex AI concepts accessible to non-technical readers and outlines the unique approach of this book. Chapter 1: Demystifying AI and LLMs: A Journey Through Time This chapter introduces the basics of AI, using simple analogies and real-world examples. It traces the evolution of AI, from rule-based systems to machine learning and deep learning, leading to the emergence of LLMs. Key concepts such as tokens, vocabulary, and embeddings are explained to build a solid foundation for understanding how LLMs process and generate language. Chapter 2: Mastering Large Language Models Delving deeper into the mechanics of LLMs, this chapter covers the transformer architecture, attention mechanisms, and the processes involved in training and fine-tuning LLMs. It includes hands-on exercises with prompts and discusses advanced techniques like chain-of-thought prompting and prompt chaining to optimise LLM performance. Chapter 3: The LLM Toolbox: Unleashing the Power of Language AI This chapter explores the diverse applications of LLMs in text generation, language translation, summarisation, question answering, and code generation. It also introduces multimodal LLMs that handle both text and images, showcasing their impact on various creative and professional fields. Practical examples and real-life scenarios illustrate how these tools can enhance productivity and creativity. Chapter 4: LLMs in the Real World: Transforming Industries Highlighting the transformative impact of LLMs across different industries, this chapter covers their role in healthcare, finance, education, creative industries, and business. It discusses how LLMs are revolutionising tasks such as medical diagnosis, fraud detection, personalised tutoring, and content creation, and explores the future of work in an AI-powered world. Chapter 5: The Dark Side of LLMs: Ethical Concerns and Challenges Addressing the ethical challenges of LLMs, this chapter covers bias and fairness, privacy concerns, misuse of LLMs, security threats, and the transparency of AI decision-making. It also discusses ethical frameworks for responsible AI development and presents diverse perspectives on the risks and benefits of LLMs. Chapter 6: Mastering LLMs: Advanced Techniques and Strategies This chapter focuses on advanced techniques for leveraging LLMs, such as combining transformers with other AI models, fine-tuning open-source LLMs for specific tasks, and building LLM-powered applications. It provides detailed guidance on prompt engineering for various applications and includes a step-by-step guide to creating an AI-powered chatbot. Chapter 7: LLMs and the Future: A Glimpse into Tomorrow Looking ahead, this chapter explores emerging trends and potential breakthroughs in AI and LLM research. It discusses ethical AI development, insights from leading AI experts, and visions of a future where LLMs are integrated into everyday life. The chapter highlights the importance of building responsible AI systems that address societal concerns. Chapter 8: Your LLM Career Roadmap: Navigating the AI Job Landscape Focusing on the growing demand for LLM expertise, this chapter outlines various career paths in the AI field, such as LLM scientists, engineers, and prompt engineers. It provides resources for building the necessary skillsets and discusses the evolving job market, emphasising the importance of continuous learning and adaptability in a rapidly changing industry. Thought-Provoking Questions, Simple Exercises, and Real-Life Scenarios The book concludes with practical exercises and real-life scenarios to help readers apply their knowledge of LLMs. It includes thought-provoking questions to deepen understanding and provides resources and tools for further exploration of LLM applications. Tools to Help with Your Exercises This section lists tools and platforms for engaging with LLM exercises, such as OpenAI's Playground, Google Translate, and various IDEs for coding. Links to these tools are provided to facilitate hands-on learning and experimentation.
Download or read book Machine Learning Upgrade written by Kristen Kehrer and published by John Wiley & Sons. This book was released on 2024-07-29 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: A much-needed guide to implementing new technology in workspaces From experts in the field comes Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure, a book that provides data scientists and managers with best practices at the intersection of management, large language models (LLMs), machine learning, and data science. This groundbreaking book will change the way that you view the pipeline of data science. The authors provide an introduction to modern machine learning, showing you how it can be viewed as a holistic, end-to-end system—not just shiny new gadget in an otherwise unchanged operational structure. By adopting a data-centric view of the world, you can begin to see unstructured data and LLMs as the foundation upon which you can build countless applications and business solutions. This book explores a whole world of decision making that hasn't been codified yet, enabling you to forge the future using emerging best practices. Gain an understanding of the intersection between large language models and unstructured data Follow the process of building an LLM-powered application while leveraging MLOps techniques such as data versioning and experiment tracking Discover best practices for training, fine tuning, and evaluating LLMs Integrate LLM applications within larger systems, monitor their performance, and retrain them on new data This book is indispensable for data professionals and business leaders looking to understand LLMs and the entire data science pipeline.
Download or read book Generative AI Application Integration Patterns written by Juan Pablo Bustos and published by Packt Publishing Ltd. This book was released on 2024-09-05 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the transformative potential of GenAI with this comprehensive guide that serves as an indispensable roadmap for integrating large language models into real-world applications. Gain invaluable insights into identifying compelling use cases, leveraging state-of-the-art models effectively, deploying these models into your applications at scale, and navigating ethical considerations. Key Features Get familiar with the most important tools and concepts used in real scenarios to design GenAI apps Interact with GenAI models to tailor model behavior to minimize hallucinations Get acquainted with a variety of strategies and an easy to follow 4 step frameworks for integrating GenAI into applications Book Description Explore the transformative potential of GenAI in the application development lifecycle. Through concrete examples, you will go through the process of ideation and integration, understanding the tradeoffs and the decision points when integrating GenAI. With recent advances in models like Google Gemini, Anthropic Claude, DALL-E and GPT-4o, this timely resource will help you harness these technologies through proven design patterns. We then delve into the practical applications of GenAI, identifying common use cases and applying design patterns to address real-world challenges. From summarization and metadata extraction to intent classification and question answering, each chapter offers practical examples and blueprints for leveraging GenAI across diverse domains and tasks. You will learn how to fine-tune models for specific applications, progressing from basic prompting to sophisticated strategies such as retrieval augmented generation (RAG) and chain of thought. Additionally, we provide end-to-end guidance on operationalizing models, including data prep, training, deployment, and monitoring. We also focus on responsible and ethical development techniques for transparency, auditing, and governance as crucial design patterns. What you will learn Concepts of GenAI: pre-training, fine-tuning, prompt engineering, and RAG Framework for integrating AI: entry points, prompt pre-processing, inference, post-processing, and presentation Patterns for batch and real-time integration Code samples for metadata extraction, summarization, intent classification, question-answering with RAG, and more Ethical use: bias mitigation, data privacy, and monitoring Deployment and hosting options for GenAI models Who this book is for This book is not an introduction to AI/ML or Python. It offers practical guides for designing, building, and deploying GenAI applications in production. While all readers are welcome, those who benefit most include: Developer engineers with foundational tech knowledge Software architects seeking best practices and design patterns Professionals using ML for data science, research, etc., who want a deeper understanding of Generative AI Technical product managers with a software development background This concise focus ensures practical, actionable insights for experienced professionals
Download or read book Machine Learning and Generative AI for Marketing written by Yoon Hyup Hwang and published by Packt Publishing Ltd. This book was released on 2024-08-30 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Start transforming your data-driven marketing strategies and increasing customer engagement. Learn how to create compelling marketing content using advanced gen AI techniques and stay in touch with the future AI ML landscape. Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Enhance customer engagement and personalization through predictive analytics and advanced segmentation techniques Combine Python programming with the latest advancements in generative AI to create marketing content and address real-world marketing challenges Understand cutting-edge AI concepts and their responsible use in marketing Book Description In the dynamic world of marketing, the integration of artificial intelligence (AI) and machine learning (ML) is no longer just an advantage—it's a necessity. Moreover, the rise of generative AI (GenAI) helps with the creation of highly personalized, engaging content that resonates with the target audience. This book provides a comprehensive toolkit for harnessing the power of GenAI to craft marketing strategies that not only predict customer behaviors but also captivate and convert, leading to improved cost per acquisition, boosted conversion rates, and increased net sales. Starting with the basics of Python for data analysis and progressing to sophisticated ML and GenAI models, this book is your comprehensive guide to understanding and applying AI to enhance marketing strategies. Through engaging content & hands-on examples, you'll learn how to harness the capabilities of AI to unlock deep insights into customer behaviors, craft personalized marketing messages, and drive significant business growth. Additionally, you'll explore the ethical implications of AI, ensuring that your marketing strategies are not only effective but also responsible and compliant with current standards By the conclusion of this book, you'll be equipped to design, launch, and manage marketing campaigns that are not only successful but also cutting-edge. What you will learn Master key marketing KPIs with advanced computational techniques Use explanatory data analysis to drive marketing decisions Leverage ML models to predict customer behaviors, engagement levels, and customer lifetime value Enhance customer segmentation with ML and develop highly personalized marketing campaigns Design and execute effective A/B tests to optimize your marketing decisions Apply natural language processing (NLP) to analyze customer feedback and sentiments Integrate ethical AI practices to maintain privacy in data-driven marketing strategies Who this book is for This book targets a diverse group of professionals: Data scientists and analysts in the marketing domain looking to apply advanced AI ML techniques to solve real-world marketing challenges Machine learning engineers and software developers aiming to build or integrate AI-driven tools and applications for marketing purposes Marketing professionals, business leaders, and entrepreneurs who must understand the impact of AI on marketing Reader are presumed to have a foundational proficiency in Python and a basic to intermediate grasp of ML principles and data science methodologies.
Download or read book Transformers for Natural Language Processing and Computer Vision written by Denis Rothman and published by Packt Publishing Ltd. This book was released on 2024-02-29 with total page 731 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive guide to LLMs, from architectures, pretraining, and fine-tuning to Retrieval Augmented Generation (RAG), multimodal Generative AI, risks, and implementations with ChatGPT Plus with GPT-4, Hugging Face, and Vertex AI Key Features Compare and contrast 20+ models (including GPT-4, BERT, and Llama 2) and multiple platforms and libraries to find the right solution for your project Apply RAG with LLMs using customized texts and embeddings Mitigate LLM risks, such as hallucinations, using moderation models and knowledge bases Purchase of the print or Kindle book includes a free eBook in PDF format Book DescriptionTransformers for Natural Language Processing and Computer Vision, Third Edition, explores Large Language Model (LLM) architectures, applications, and various platforms (Hugging Face, OpenAI, and Google Vertex AI) used for Natural Language Processing (NLP) and Computer Vision (CV). The book guides you through different transformer architectures to the latest Foundation Models and Generative AI. You’ll pretrain and fine-tune LLMs and work through different use cases, from summarization to implementing question-answering systems with embedding-based search techniques. You will also learn the risks of LLMs, from hallucinations and memorization to privacy, and how to mitigate such risks using moderation models with rule and knowledge bases. You’ll implement Retrieval Augmented Generation (RAG) with LLMs to improve the accuracy of your models and gain greater control over LLM outputs. Dive into generative vision transformers and multimodal model architectures and build applications, such as image and video-to-text classifiers. Go further by combining different models and platforms and learning about AI agent replication. This book provides you with an understanding of transformer architectures, pretraining, fine-tuning, LLM use cases, and best practices.What you will learn Breakdown and understand the architectures of the Original Transformer, BERT, GPT models, T5, PaLM, ViT, CLIP, and DALL-E Fine-tune BERT, GPT, and PaLM 2 models Learn about different tokenizers and the best practices for preprocessing language data Pretrain a RoBERTa model from scratch Implement retrieval augmented generation and rules bases to mitigate hallucinations Visualize transformer model activity for deeper insights using BertViz, LIME, and SHAP Go in-depth into vision transformers with CLIP, DALL-E 2, DALL-E 3, and GPT-4V Who this book is for This book is ideal for NLP and CV engineers, software developers, data scientists, machine learning engineers, and technical leaders looking to advance their LLMs and generative AI skills or explore the latest trends in the field. Knowledge of Python and machine learning concepts is required to fully understand the use cases and code examples. However, with examples using LLM user interfaces, prompt engineering, and no-code model building, this book is great for anyone curious about the AI revolution.
Download or read book Python Machine Learning By Example written by Yuxi (Hayden) Liu and published by Packt Publishing Ltd. This book was released on 2024-07-31 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author Yuxi (Hayden) Liu teaches machine learning from the fundamentals to building NLP transformers and multimodal models with best practice tips and real-world examples using PyTorch, TensorFlow, scikit-learn, and pandas Key Features Discover new and updated content on NLP transformers, PyTorch, and computer vision modeling Includes a dedicated chapter on best practices and additional best practice tips throughout the book to improve your ML solutions Implement ML models, such as neural networks and linear and logistic regression, from scratch Purchase of the print or Kindle book includes a free PDF copy Book DescriptionThe fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.What you will learn Follow machine learning best practices throughout data preparation and model development Build and improve image classifiers using convolutional neural networks (CNNs) and transfer learning Develop and fine-tune neural networks using TensorFlow and PyTorch Analyze sequence data and make predictions using recurrent neural networks (RNNs), transformers, and CLIP Build classifiers using support vector machines (SVMs) and boost performance with PCA Avoid overfitting using regularization, feature selection, and more Who this book is for This expanded fourth edition is ideal for data scientists, ML engineers, analysts, and students with Python programming knowledge. The real-world examples, best practices, and code prepare anyone undertaking their first serious ML project.
Download or read book CONVR 2023 Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality written by Pietro Capone and published by Firenze University Press. This book was released on with total page 1279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the overarching theme of “Managing the Digital Transformation of Construction Industry” the 23rd International Conference on Construction Applications of Virtual Reality (CONVR 2023) presented 123 high-quality contributions on the topics of: Virtual and Augmented Reality (VR/AR), Building Information Modeling (BIM), Simulation and Automation, Computer Vision, Data Science, Artificial Intelligence, Linked Data, Semantic Web, Blockchain, Digital Twins, Health & Safety and Construction site management, Green buildings, Occupant-centric design and operation, Internet of Everything. The editors trust that this publication can stimulate and inspire academics, scholars and industry experts in the field, driving innovation, growth and global collaboration among researchers and stakeholders.
Download or read book Programming Large Language Models with Azure Open AI written by Francesco Esposito and published by Microsoft Press. This book was released on 2024-04-03 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use LLMs to build better business software applications Autonomously communicate with users and optimize business tasks with applications built to make the interaction between humans and computers smooth and natural. Artificial Intelligence expert Francesco Esposito illustrates several scenarios for which a LLM is effective: crafting sophisticated business solutions, shortening the gap between humans and software-equipped machines, and building powerful reasoning engines. Insight into prompting and conversational programming—with specific techniques for patterns and frameworks—unlock how natural language can also lead to a new, advanced approach to coding. Concrete end-to-end demonstrations (featuring Python and ASP.NET Core) showcase versatile patterns of interaction between existing processes, APIs, data, and human input. Artificial Intelligence expert Francesco Esposito helps you: Understand the history of large language models and conversational programming Apply prompting as a new way of coding Learn core prompting techniques and fundamental use-cases Engineer advanced prompts, including connecting LLMs to data and function calling to build reasoning engines Use natural language in code to define workflows and orchestrate existing APIs Master external LLM frameworks Evaluate responsible AI security, privacy, and accuracy concerns Explore the AI regulatory landscape Build and implement a personal assistant Apply a retrieval augmented generation (RAG) pattern to formulate responses based on a knowledge base Construct a conversational user interface For IT Professionals and Consultants For software professionals, architects, lead developers, programmers, and Machine Learning enthusiasts For anyone else interested in natural language processing or real-world applications of human-like language in software