EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Linkage Thermodynamics of Macromolecular Interactions

Download or read book Linkage Thermodynamics of Macromolecular Interactions written by and published by Academic Press. This book was released on 1998-06-24 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume commemorates the 50th anniversary of the appearance in Volume 4 in 1948 of Dr. Jeffries Wyman's famous paper in which he "laid down" the foundations of linkage thermodynamics. Experts in this area contribute articles on the state-of-the-art of this important field and on new developments of the original theory. Among the topics covered in this volume are electrostatic contributions to molecular free energies in solution; site-specific analysis of mutational effects in proteins; allosteric transitions of the acetylcholine receptor; and deciphering the molecular code of hemoglobin allostery.

Book Binding and Linkage

    Book Details:
  • Author : Jeffries Wyman
  • Publisher : University Science Books
  • Release : 1990
  • ISBN : 9780935702569
  • Pages : 358 pages

Download or read book Binding and Linkage written by Jeffries Wyman and published by University Science Books. This book was released on 1990 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ligand-macromolecule interactions are of fundamental importance in the control of biological processes. This book applies the principles of linkage thermodynamics to polyfunctional macromolecular systems under equilibrium conditions, and describes the binding, linkage, and feedback phenomena that lead to control of complex metabolic processes. The first chapter sets out the different processes (conformational changes, changes in state of aggregation, phase changes) involving biological macromolecules which are affected by chemical variables (such as ligands) or physical variables (such as temperature and pressure). The general effects of ligands on micromolecular conformations and interactions are illustrated with specific examples from the respiratory proteins, electron-transport proteins, and nucleic acid binding proteins. Subsequent chapters develop these themes, and describe in detail how the mathematics of regulation and control can be applied to macromolecules in biological system.

Book Thermodynamics and Solvent Linkage of Macromolecule ligand Interactions

Download or read book Thermodynamics and Solvent Linkage of Macromolecule ligand Interactions written by and published by . This book was released on 2014 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Binding involves two steps, desolvation and association. While water is ubiquitous and occurs at high concentration, it is typically ignored. In vitro experiments typically use infinite dilution conditions, while in vivo, the concentration of water is decreased due to the presence of high concentrations of molecules in the cellular milieu. Our paper discusses isothermal titration calorimetry approaches that address the role of water in binding. For example, use of D2O allows the contribution of solvent reorganization to the enthalpy component to be assessed. Furthermore, the addition of osmolytes will decrease the water activity of a solution and allow effects on Ka to be determined. In most cases, binding becomes tighter in the presence of osmolytes as the desolvation penalty associated with binding is minimized. In other cases, the osmolytes prefer to interact with the ligand or protein, and if their removal is more difficult than shedding water, then binding can be weakened. Lastly, these complicating layers can be discerned by different slopes in ln(Ka) vs osmolality plots and by differential scanning calorimetry in the presence of the osmolyte.

Book Thermodynamic Investigation of Bio macromolecular Interactions

Download or read book Thermodynamic Investigation of Bio macromolecular Interactions written by Maryam Kabiri and published by . This book was released on 2014 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: The spontaneous assembly of polypeptides through non-covalent interactions at physiological conditions is the main focus of the presented work and will be discussed from two different perspectives: (i) the interaction of peptide chains with themselves leading to formation of higher order structures (self-assembling peptides); (ii) the interaction of polypeptides with nano-sized surfaces (protein-nanoparticle interactions). Although self-assembling peptides are an important growing class of biomaterials, most of the works in this field have focused upon their various biomedical applications without highlighting the molecular mechanisms which result in their self-assembly into supra-molecular structures inside the body. Herein, through an in-depth thermodynamic analysis utilizing Isothermal Titration Calorimtry technique, the driving forces for self-assembly of ionic self-complementary peptide RADA4 and its variants were identified implying great contribution of molecular hydration and charge to the self-assembly process. Furthermore, the interfacial molecules involved in self-assembly of these molecules was experimentally quantified. It was found that appending five serine residues to C-terminus of RADA4 can overshadow the hydrophobic contribution of RADA segment leading to hydrogen bonding being the main driving force for self-assembly; while presence of 5 lysine residues inhibited RADA4 self-assembly. Secondly, the interaction of proteins with zwitterionic-modified nanoparticles (NPs) was investigated. Although widely studied, the underlying mechanism for the protein-repellent behavior of zwitterionic polymers is largely unknown. A set of thermodynamic investigations was performed to study the interaction of two model proteins (with distinctly different adsorption behaviour) with the surface of zwitterionic-modified silica nanoparticles. The nature of the interaction between proteins and polymer-modified nanoparticle was identified along with highlighting the main driving forces leading to their adsorption onto the nanoparticle's surface. Moreover, the impact of zwitterion's spacer length and end-group chemistry on thermodynamics of protein adsorption was analyzed. Overall, our results indicated that the main advantage of zwitterionic polymer modification of surfaces are: i) an increase in water molecules at the interface, ii) lack of counter-ion release from surfaces and iii) lower structural reorganization of the system upon protein-surface interaction. The findings presented in this work will fundamentally impact our understanding of nano-bio interfaces leading to development of more optimum nano-biomaterials in future.

Book Introduction to Macromolecular Binding Equilibria

Download or read book Introduction to Macromolecular Binding Equilibria written by Charles P. Woodbury and published by CRC Press. This book was released on 2008 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Binding sites -- Binding isotherms -- Binding linkage, binding competition, and multiple ligand species -- Cooperativity -- Binding to lattices of sites.

Book Protein Interactions

    Book Details:
  • Author : Peter Schuck
  • Publisher : Springer Science & Business Media
  • Release : 2007-03-20
  • ISBN : 0387359664
  • Pages : 537 pages

Download or read book Protein Interactions written by Peter Schuck and published by Springer Science & Business Media. This book was released on 2007-03-20 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume successfully and clearly examines how biophysical approaches can be used to study complex systems of reversibly interacting proteins. It deals with the methodology behind the research and shows how to synergistically incorporate several methodologies for use. Each chapter treats and introduces the reader to different biological systems, includes a brief summary of the physical principles, and mentions practical requirements.

Book Protein   Ligand Binding Thermodynamics

Download or read book Protein Ligand Binding Thermodynamics written by Justin M. Miller and published by American Chemical Society. This book was released on 2023-06-01 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ligand binding by macromolecules represents a core event of broad relevance to a range of systems, including catalytic systems alongside noncatalytic systems such as nucleic acid binding by transcription factors or extracellular ligand binding by proteins involved in signaling pathways. The scope of this primer is constrained to introduce only foundational models without significant discussion of more advanced topics such as allosteric or linkage effects. Linkage occurs when the binding of a ligand is influenced by the binding of another molecule of the same ligand (homotropic linkage), the binding of a different ligand (heterotropic linkage), physical variables such as temperature or pressure (physical linkage), or changes in macromolecular assembly state (polysteric linkage). Taking this into account, the foundational themes presented in this primer can be used to describe any macromolecule–ligand interaction either by direct use of the models and techniques described here or by applying them to develop more advanced models to explain additional complexities such as those allosteric or linkage effects just mentioned. The target audience of this primer is the senior undergraduate or junior graduate student who lacks a foundation in ligand-binding thermodynamics. As such, we have focused primarily on foundational thermodynamic treatments and presented only general discussions of relevant experimental designs. Readers of this primer will learn how to build a working understanding of common factors that promote energetic favorability for ligand binding; develop a functional toolbox to understand ligand binding from the perspective of collecting, plotting, and interpreting ligand-binding data; enhance proficiency in deriving thermodynamic mechanisms for ligand binding; and become comfortable in interpreting binding data reported in the literature and independently expanding knowledge beyond the scope introduced in this primer.

Book Promises and Limits of Reductionism in the Biomedical Sciences

Download or read book Promises and Limits of Reductionism in the Biomedical Sciences written by Marc H. V. Van Regenmortel and published by John Wiley & Sons. This book was released on 2003-02-07 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reductionism as a scientific methodology has been extraordinarily successful in biology. However, recent developments in molecular biology have shown that reductionism is seriously inadequate in dealing with the mind-boggling complexity of integrated biological systems. This title presents an appropriate balance between science and philosophy and covers traditional philosophical treatments of reductionism as well as the benefits and shortcomings of reductionism in particular areas of science. Discussing the issue of reductionism in the practice of medicine it takes into account the holistic and integrative aspects that require the context of the patient in his biological and psychological entirety. The emerging picture is that what first seems like hopeless disagreements turn out to be differences in emphasis. Although genes play an important role in biology, the focus on genetics and genomics has often been misleading. The consensus view leads to pluralism: both reductionst methods and a more integrative approach to biological complexity are required, depending on the questions that are asked. * An even balance of contributions from scientists and philosophers of science - representing a unique interchange between both communities interested in reductionism

Book Physics With Illustrative Examples From Medicine and Biology

Download or read book Physics With Illustrative Examples From Medicine and Biology written by George B. Benedek and published by Springer Science & Business Media. This book was released on 2000-06-26 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reissue of a classic book -- corrected, edited, typeset, redrawn, and indexed for the Biological Physics Series. Intended for undergraduate courses in biophysics, biological physics, physiology, medical physics, and biomedical engineering, this is an introduction to statistical physics with examples and problems from the medical and biological sciences. Topics include the elements of the theory of probability, Poisson statistics, thermal equilibrium, entropy and free energy, and the second law of thermodynamics. It can be used as a supplement to standard introductory physics courses, and as a text for medical schools, medical physics courses, and biology departments. The three volumes combined present all the major topics in physics. These books are being reissued in response to frequent requests to satisfy the growing need among students and practitioners in the medical and biological sciences with a working knowledge of the physical sciences. The books are also in demand in physics departments either as supplements to traditional intro texts or as a main text for those departments offering courses with biological or medical physics orientation.

Book Kinetics for the Life Sciences

Download or read book Kinetics for the Life Sciences written by H. Gutfreund and published by Cambridge University Press. This book was released on 1995-09-14 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to introduce the reader to the kinetic analysis of a wide range of biological processes at the molecular level. It is intended to show that the same approach can be used to resolve the number of steps in enzyme reactions, muscle contraction, visual perception and ligand binding receptors that trigger other physiological processes. Attention is also given to methods for characterizing these steps in chemical terms. Although the treatment is mainly theoretical, a wide range of examples and experimental techniques are also introduced and an historical approach is used to demonstrate the development of the theory and experimental techniques of kinetic analysis in biology.

Book Equilibria and Kinetics of Biological Macromolecules

Download or read book Equilibria and Kinetics of Biological Macromolecules written by Prof. Jan Hermans and published by John Wiley & Sons. This book was released on 2013-10-22 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progressively builds a deep understanding of macromolecular behavior Based on each of the authors' roughly forty years of biophysics research and teaching experience, this text instills readers with a deep understanding of the biophysics of macromolecules. It sets a solid foundation in the basics by beginning with core physical concepts such as thermodynamics, quantum chemical models, molecular structure and interactions, and water and the hydrophobic effect. Next, the book examines statistical mechanics, protein-ligand binding, and conformational stability. Finally, the authors address kinetics and equilibria, exploring underlying theory, protein folding, and stochastic models. With its strong emphasis on molecular interactions, Equilibria and Kinetics of Biological Macromolecules offers new insights and perspectives on proteins and other macromolecules. The text features coverage of: Basic theory, applications, and new research findings Related topics in thermodynamics, quantum mechanics, statistical mechanics, and molecular simulations Principles and applications of molecular simulations in a dedicated chapter and interspersed throughout the text Macromolecular binding equilibria from the perspective of statistical mechanics Stochastic processes related to macromolecules Suggested readings at the end of each chapter include original research papers, reviews and monographs, enabling readers to explore individual topics in greater depth. At the end of the text, ten appendices offer refreshers on mathematical treatments, including probability, computational methods, Poisson equations, and defining molecular boundaries. With its classroom-tested pedagogical approach, Equilibria and Kinetics of Biological Macromolecules is recommended as a graduate-level textbook for biophysics courses and as a reference for researchers who want to strengthen their understanding of macromolecular behavior.

Book Thermodynamic Theory of Site Specific Binding Processes in Biological Macromolecules

Download or read book Thermodynamic Theory of Site Specific Binding Processes in Biological Macromolecules written by Enrico Di Cera and published by Cambridge University Press. This book was released on 1995-11-23 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monograph on important subject in biochemistry and biophysics.

Book Conformational Properties of Macromolecules

Download or read book Conformational Properties of Macromolecules written by A Hopfinger and published by Elsevier. This book was released on 2012-12-02 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conformational Properties of Macromolecules provides information about the molecular parameters and spatial and thermodynamic properties of macromolecules and the application of theoretical conformational energy calculations. The book covers topics such as macromolecular geometry, the classification of macromolecular structure, and the generation of macromolecular conformations and configurations; conformational energies and potential functions, induced dipole and polymer-solvent interactions; and conformational transition in molecules. Also covered are topics such as absorption and optical rotation spectroscopies, epitaxial crystallization of macromolecules, and conformational fluctuation in macromolecules. The text is recommended for structural chemists, X-ray crystallographers, biophysicists, physical chemists, and macromolecular scientists who would like to know more about this particular area of knowledge.

Book Biomolecular Thermodynamics

Download or read book Biomolecular Thermodynamics written by Douglas Barrick and published by CRC Press. This book was released on 2017-09-11 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: "an impressive text that addresses a glaring gap in the teaching of physical chemistry, being specifically focused on biologically-relevant systems along with a practical focus.... the ample problems and tutorials throughout are much appreciated." –Tobin R. Sosnick, Professor and Chair of Biochemistry and Molecular Biology, University of Chicago "Presents both the concepts and equations associated with statistical thermodynamics in a unique way that is at visual, intuitive, and rigorous. This approach will greatly benefit students at all levels." –Vijay S. Pande, Henry Dreyfus Professor of Chemistry, Stanford University "a masterful tour de force.... Barrick's rigor and scholarship come through in every chapter." –Rohit V. Pappu, Edwin H. Murty Professor of Engineering, Washington University in St. Louis This book provides a comprehensive, contemporary introduction to developing a quantitative understanding of how biological macromolecules behave using classical and statistical thermodynamics. The author focuses on practical skills needed to apply the underlying equations in real life examples. The text develops mechanistic models, showing how they connect to thermodynamic observables, presenting simulations of thermodynamic behavior, and analyzing experimental data. The reader is presented with plenty of exercises and problems to facilitate hands-on learning through mathematical simulation. Douglas E. Barrick is a professor in the Department of Biophysics at Johns Hopkins University. He earned his Ph.D. in biochemistry from Stanford University, and a Ph.D. in biophysics and structural biology from the University of Oregon.

Book Proteins in Solution and at Interfaces

Download or read book Proteins in Solution and at Interfaces written by Juan M. Ruso and published by John Wiley & Sons. This book was released on 2013-01-31 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores new applications emerging from our latest understanding of proteins in solution and at interfaces Proteins in solution and at interfaces increasingly serve as the starting point for exciting new applications, from biomimetic materials to nanoparticle patterning. This book surveys the state of the science in the field, offering investigators a current understanding of the characteristics of proteins in solution and at interfaces as well as the techniques used to study these characteristics. Moreover, the authors explore many of the new and emerging applications that have resulted from the most recent studies. Topics include protein and protein aggregate structure; computational and experimental techniques to study protein structure, aggregation, and adsorption; proteins in non-standard conditions; and applications in biotechnology. Proteins in Solution and at Interfaces is divided into two parts: Part One introduces concepts as well as theoretical and experimental techniques that are used to study protein systems, including X-ray crystallography, nuclear magnetic resonance, small angle scattering, and spectroscopic methods Part Two examines current and emerging applications, including nanomaterials, natural fibrous proteins, and biomolecular thermodynamics The book's twenty-three chapters have been contributed by leading experts in the field. These contributions are based on a thorough review of the latest peer-reviewed findings as well as the authors' own research experience. Chapters begin with a discussion of core concepts and then gradually build in complexity, concluding with a forecast of future developments. Readers will not only gain a current understanding of proteins in solution and at interfaces, but also will discover how theoretical and technical developments in the field can be translated into new applications in material design, genetic engineering, personalized medicine, drug delivery, biosensors, and biotechnology.

Book Introduction to Macromolecular Binding Equilibria

Download or read book Introduction to Macromolecular Binding Equilibria written by Charles P. Woodbury and published by CRC Press. This book was released on 2007-11-08 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Macromolecules in the body form noncovalent associations, such as DNA-protein or protein-protein complexes, that control and regulate numerous cellular functions. Understanding how changes in the concentration and conformation of these macromolecules can trigger physiological responses is essential for researchers developing drug therapies to treat

Book Introduction to Biomolecular Structure and Biophysics

Download or read book Introduction to Biomolecular Structure and Biophysics written by Gauri Misra and published by Springer. This book was released on 2017-09-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book presents a modern concept in biophysics based on recently published research. It highlights various aspects of the biophysical fundamentals and techniques that are currently used to study different physical properties of biomolecules, and relates the biological phenomenon with the underlying physical concepts. The content is divided into nine chapters summarizing the structural details of proteins, including recently discovered novel folds, higher order structures of nucleic acids, as well as lipids and the physical forces governing the macromolecular interactions which are essential for the various biological processes. It also provides insights into the recent advances in biophysical techniques including Hydrogen Deuterium Exchange with Mass Spectrometry (HDX-MS), Small angle X-ray scattering (SAXS) and Cryo Electron Microscopy (cryo EM), supplemented with interesting experimental data. It is a valuable reference resource for anyone with a desire to gain a better understanding of the fundamentals of biophysical concepts and techniques of important biomolecules.