EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Linear Optimization and Approximation

Download or read book Linear Optimization and Approximation written by Klaus Glashoff and published by . This book was released on 1983 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Linear Optimization and Approximation

Download or read book Linear Optimization and Approximation written by K. Glashoff and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: A linear optimization problem is the task of minimizing a linear real-valued function of finitely many variables subject to linear con straints; in general there may be infinitely many constraints. This book is devoted to such problems. Their mathematical properties are investi gated and algorithms for their computational solution are presented. Applications are discussed in detail. Linear optimization problems are encountered in many areas of appli cations. They have therefore been subject to mathematical analysis for a long time. We mention here only two classical topics from this area: the so-called uniform approximation of functions which was used as a mathematical tool by Chebyshev in 1853 when he set out to design a crane, and the theory of systems of linear inequalities which has already been studied by Fourier in 1823. We will not treat the historical development of the theory of linear optimization in detail. However, we point out that the decisive break through occurred in the middle of this century. It was urged on by the need to solve complicated decision problems where the optimal deployment of military and civilian resources had to be determined. The availability of electronic computers also played an important role. The principal computational scheme for the solution of linear optimization problems, the simplex algorithm, was established by Dantzig about 1950. In addi tion, the fundamental theorems on such problems were rapidly developed, based on earlier published results on the properties of systems of linear inequalities.

Book Optimization and Approximation

Download or read book Optimization and Approximation written by Pablo Pedregal and published by Springer. This book was released on 2017-09-07 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.

Book Approximation and Optimization

Download or read book Approximation and Optimization written by Ioannis C. Demetriou and published by Springer. This book was released on 2019-05-10 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the development of approximation-related algorithms and their relevant applications. Individual contributions are written by leading experts and reflect emerging directions and connections in data approximation and optimization. Chapters discuss state of the art topics with highly relevant applications throughout science, engineering, technology and social sciences. Academics, researchers, data science practitioners, business analysts, social sciences investigators and graduate students will find the number of illustrations, applications, and examples provided useful. This volume is based on the conference Approximation and Optimization: Algorithms, Complexity, and Applications, which was held in the National and Kapodistrian University of Athens, Greece, June 29–30, 2017. The mix of survey and research content includes topics in approximations to discrete noisy data; binary sequences; design of networks and energy systems; fuzzy control; large scale optimization; noisy data; data-dependent approximation; networked control systems; machine learning ; optimal design; no free lunch theorem; non-linearly constrained optimization; spectroscopy.

Book Linear Optimization and Approximation

Download or read book Linear Optimization and Approximation written by K Glashoff and published by . This book was released on 1983-04-13 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Convex Optimization

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Book Linear Optimization and Approximation

Download or read book Linear Optimization and Approximation written by K. Glashoff and published by Springer. This book was released on 1983-04-13 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: A linear optimization problem is the task of minimizing a linear real-valued function of finitely many variables subject to linear con straints; in general there may be infinitely many constraints. This book is devoted to such problems. Their mathematical properties are investi gated and algorithms for their computational solution are presented. Applications are discussed in detail. Linear optimization problems are encountered in many areas of appli cations. They have therefore been subject to mathematical analysis for a long time. We mention here only two classical topics from this area: the so-called uniform approximation of functions which was used as a mathematical tool by Chebyshev in 1853 when he set out to design a crane, and the theory of systems of linear inequalities which has already been studied by Fourier in 1823. We will not treat the historical development of the theory of linear optimization in detail. However, we point out that the decisive break through occurred in the middle of this century. It was urged on by the need to solve complicated decision problems where the optimal deployment of military and civilian resources had to be determined. The availability of electronic computers also played an important role. The principal computational scheme for the solution of linear optimization problems, the simplex algorithm, was established by Dantzig about 1950. In addi tion, the fundamental theorems on such problems were rapidly developed, based on earlier published results on the properties of systems of linear inequalities.

Book Advances in Optimization and Approximation

Download or read book Advances in Optimization and Approximation written by Ding-Zhu Du and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of research papers in optimization and approximation dedicated to Professor Minyi Yue of the Institute of Applied Mathematics, Beijing, China. The papers provide a broad spectrum of research on optimization problems, including scheduling, location, assignment, linear and nonlinear programming problems as well as problems in molecular biology. The emphasis of the book is on algorithmic aspects of research work in optimization. Special attention is paid to approximation algorithms, including heuristics for combinatorial approximation problems, approximation algorithms for global optimization problems, and applications of approximations in real problems. The work provides the state of the art for researchers in mathematical programming, operations research, theoretical computer science and applied mathematics.

Book Optimization and Approximation

Download or read book Optimization and Approximation written by Werner Krabs and published by John Wiley & Sons. This book was released on 1979 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Linear Approximation in C

Download or read book Numerical Linear Approximation in C written by Nabih Abdelmalek and published by CRC Press. This book was released on 2008-05-19 with total page 964 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrating the relevance of linear approximation in a variety of fields, Numerical Linear Approximation in C presents a unique collection of linear approximation algorithms that can be used to analyze, model, and compress discrete data. Developed by the lead author, the algorithms have been successfully applied to several engineering projects at the National Research Council of Canada. Basing most of the algorithms on linear programming techniques, the book begins with an introductory section that covers applications, the simplex method, and matrices. The next three parts focus on various L1, Chebyshev, and least squares approximations, including one-sided, bounded variables, and piecewise. The final section presents the solution of underdetermined systems of consistent linear equations that are subject to different constraints on the elements of the unknown solution vector. Except in the preliminary section, all chapters include the C functions of the algorithms, along with drivers that contain numerous test case examples and results. The accompanying CD-ROM also provides the algorithms written in C code as well as the test drivers. To use the software, it is not required to understand the theory behind each function.

Book Approximation Theory and Optimization

Download or read book Approximation Theory and Optimization written by M. D. Buhmann and published by Cambridge University Press. This book was released on 1997-11-13 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Michael Powell is one of the world's foremost figures in numerical analysis. This volume, first published in 1997, is derived from invited talks given at a meeting celebrating his 60th birthday and, reflecting Powell's own achievements, focuses on innovative work in optimisation and in approximation theory. The individual papers have been written by leading authorities in their subjects and are a mix of expository articles and surveys. They have all been reviewed and edited to form a coherent volume for this important discipline within mathematics, with highly relevant applications throughout science and engineering.

Book Linear Programming with MATLAB

Download or read book Linear Programming with MATLAB written by Michael C. Ferris and published by SIAM. This book was released on 2007-01-01 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a self-contained introduction to linear programming using MATLAB software to elucidate the development of algorithms and theory. Early chapters cover linear algebra basics, the simplex method, duality, the solving of large linear problems, sensitivity analysis, and parametric linear programming. In later chapters, the authors discuss quadratic programming, linear complementarity, interior-point methods, and selected applications of linear programming to approximation and classification problems. Exercises are interwoven with the theory presented in each chapter, and two appendices provide additional information on linear algebra, convexity, nonlinear functions, and on available MATLAB commands, respectively. Readers can access MATLAB codes and associated mex files at a Web site maintained by the authors. Only a basic knowledge of linear algebra and calculus is required to understand this textbook, which is geared toward junior and senior-level undergraduate students, first-year graduate students, and researchers unfamiliar with linear programming.

Book Complexity in Numerical Optimization

Download or read book Complexity in Numerical Optimization written by Panos M. Pardalos and published by World Scientific. This book was released on 1993 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational complexity, originated from the interactions between computer science and numerical optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty.The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable.The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions.This book is a collection of articles on recent complexity developments in numerical optimization. The topics covered include complexity of approximation algorithms, new polynomial time algorithms for convex quadratic minimization, interior point algorithms, complexity issues regarding test generation of NP-hard problems, complexity of scheduling problems, min-max, fractional combinatorial optimization, fixed point computations and network flow problems.The collection of articles provide a broad spectrum of the direction in which research is going and help to elucidate the nature of computational complexity in optimization. The book will be a valuable source of information to faculty, students and researchers in numerical optimization and related areas.

Book Mathematical Theory of Optimization

Download or read book Mathematical Theory of Optimization written by Ding-Zhu Du and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.

Book Approximation Algorithms and Semidefinite Programming

Download or read book Approximation Algorithms and Semidefinite Programming written by Bernd Gärtner and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.

Book The Design of Approximation Algorithms

Download or read book The Design of Approximation Algorithms written by David P. Williamson and published by Cambridge University Press. This book was released on 2011-04-26 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.

Book Potential Function Methods for Approximately Solving Linear Programming Problems  Theory and Practice

Download or read book Potential Function Methods for Approximately Solving Linear Programming Problems Theory and Practice written by Daniel Bienstock and published by Springer. This book was released on 2013-03-26 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Potential Function Methods For Approximately Solving Linear Programming Problems breaks new ground in linear programming theory. The book draws on the research developments in three broad areas: linear and integer programming, numerical analysis, and the computational architectures which enable speedy, high-level algorithm design. During the last ten years, a new body of research within the field of optimization research has emerged, which seeks to develop good approximation algorithms for classes of linear programming problems. This work both has roots in fundamental areas of mathematical programming and is also framed in the context of the modern theory of algorithms. The result of this work, in which Daniel Bienstock has been very much involved, has been a family of algorithms with solid theoretical foundations and with growing experimental success. This book will examine these algorithms, starting with some of the very earliest examples, and through the latest theoretical and computational developments.