EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Linear Algebra and Linear Models

Download or read book Linear Algebra and Linear Models written by Ravindra B. Bapat and published by Springer Science & Business Media. This book was released on 2008-01-18 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous introduction to the basic aspects of the theory of linear estimation and hypothesis testing, covering the necessary prerequisites in matrices, multivariate normal distribution and distributions of quadratic forms along the way. It will appeal to advanced undergraduate and first-year graduate students, research mathematicians and statisticians.

Book Linear Models in Statistics

Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Book Regression

    Book Details:
  • Author : N. H. Bingham
  • Publisher : Springer Science & Business Media
  • Release : 2010-09-17
  • ISBN : 1848829698
  • Pages : 293 pages

Download or read book Regression written by N. H. Bingham and published by Springer Science & Business Media. This book was released on 2010-09-17 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression is the branch of Statistics in which a dependent variable of interest is modelled as a linear combination of one or more predictor variables, together with a random error. The subject is inherently two- or higher- dimensional, thus an understanding of Statistics in one dimension is essential. Regression: Linear Models in Statistics fills the gap between introductory statistical theory and more specialist sources of information. In doing so, it provides the reader with a number of worked examples, and exercises with full solutions. The book begins with simple linear regression (one predictor variable), and analysis of variance (ANOVA), and then further explores the area through inclusion of topics such as multiple linear regression (several predictor variables) and analysis of covariance (ANCOVA). The book concludes with special topics such as non-parametric regression and mixed models, time series, spatial processes and design of experiments. Aimed at 2nd and 3rd year undergraduates studying Statistics, Regression: Linear Models in Statistics requires a basic knowledge of (one-dimensional) Statistics, as well as Probability and standard Linear Algebra. Possible companions include John Haigh’s Probability Models, and T. S. Blyth & E.F. Robertsons’ Basic Linear Algebra and Further Linear Algebra.

Book Linear Models and the Relevant Distributions and Matrix Algebra

Download or read book Linear Models and the Relevant Distributions and Matrix Algebra written by David A. Harville and published by CRC Press. This book was released on 2023-10-23 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Exercises and solutions are included throughout, from both the first and second volume • Includes coverage of additional topics not covered in the first volume • Highly valuable as a reference book for graduate students or researchers

Book Algebra and Trigonometry

Download or read book Algebra and Trigonometry written by Jay P. Abramson and published by . This book was released on 2015-02-13 with total page 1564 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.

Book Linear Models in Matrix Form

Download or read book Linear Models in Matrix Form written by Jonathon D. Brown and published by Springer. This book was released on 2015-01-21 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an approachable introduction to statistical analysis using matrix algebra. Prior knowledge of matrix algebra is not necessary. Advanced topics are easy to follow through analyses that were performed on an open-source spreadsheet using a few built-in functions. These topics include ordinary linear regression, as well as maximum likelihood estimation, matrix decompositions, nonparametric smoothers and penalized cubic splines. Each data set (1) contains a limited number of observations to encourage readers to do the calculations themselves, and (2) tells a coherent story based on statistical significance and confidence intervals. In this way, students will learn how the numbers were generated and how they can be used to make cogent arguments about everyday matters. This textbook is designed for use in upper level undergraduate courses or first year graduate courses. The first chapter introduces students to linear equations, then covers matrix algebra, focusing on three essential operations: sum of squares, the determinant, and the inverse. These operations are explained in everyday language, and their calculations are demonstrated using concrete examples. The remaining chapters build on these operations, progressing from simple linear regression to mediational models with bootstrapped standard errors.

Book Visualizing Linear Models

Download or read book Visualizing Linear Models written by W. D. Brinda and published by Springer Nature. This book was released on 2021-02-24 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a visual and intuitive coverage of the core theory of linear models. Designed to develop fluency with the underlying mathematics and to build a deep understanding of the principles, it's an excellent basis for a one-semester course on statistical theory and linear modeling for intermediate undergraduates or graduate students. Three chapters gradually develop the essentials of linear model theory. They are each preceded by a review chapter that covers a foundational prerequisite topic. This classroom-tested work explores two distinct and complementary types of visualization: the “observations picture” and the “variables picture.” To improve retention of material, this book is supplemented by a bank of ready-made practice exercises for students. These are available for digital or print use.

Book Linear Models and Generalizations

Download or read book Linear Models and Generalizations written by C. Radhakrishna Rao and published by Springer Science & Business Media. This book was released on 2007-10-15 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised and updated with the latest results, this Third Edition explores the theory and applications of linear models. The authors present a unified theory of inference from linear models and its generalizations with minimal assumptions. They not only use least squares theory, but also alternative methods of estimation and testing based on convex loss functions and general estimating equations. Highlights of coverage include sensitivity analysis and model selection, an analysis of incomplete data, an analysis of categorical data based on a unified presentation of generalized linear models, and an extensive appendix on matrix theory.

Book Linear Model Theory

    Book Details:
  • Author : Dale L. Zimmerman
  • Publisher : Springer Nature
  • Release : 2020-11-02
  • ISBN : 3030520633
  • Pages : 504 pages

Download or read book Linear Model Theory written by Dale L. Zimmerman and published by Springer Nature. This book was released on 2020-11-02 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents a unified and rigorous approach to best linear unbiased estimation and prediction of parameters and random quantities in linear models, as well as other theory upon which much of the statistical methodology associated with linear models is based. The single most unique feature of the book is that each major concept or result is illustrated with one or more concrete examples or special cases. Commonly used methodologies based on the theory are presented in methodological interludes scattered throughout the book, along with a wealth of exercises that will benefit students and instructors alike. Generalized inverses are used throughout, so that the model matrix and various other matrices are not required to have full rank. Considerably more emphasis is given to estimability, partitioned analyses of variance, constrained least squares, effects of model misspecification, and most especially prediction than in many other textbooks on linear models. This book is intended for master and PhD students with a basic grasp of statistical theory, matrix algebra and applied regression analysis, and for instructors of linear models courses. Solutions to the book’s exercises are available in the companion volume Linear Model Theory - Exercises and Solutions by the same author.

Book Linear Models

    Book Details:
  • Author : Brenton R. Clarke
  • Publisher : John Wiley & Sons
  • Release : 2008-09-19
  • ISBN : 9780470377970
  • Pages : 288 pages

Download or read book Linear Models written by Brenton R. Clarke and published by John Wiley & Sons. This book was released on 2008-09-19 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful approach to the analysis of variance in the study of linear models Linear Models explores the theory of linear models and the dynamic relationships that these models have with Analysis of Variance (ANOVA), experimental design, and random and mixed-model effects. This one-of-a-kind book emphasizes an approach that clearly explains the distribution theory of linear models and experimental design starting from basic mathematical concepts in linear algebra. The author begins with a presentation of the classic fixed-effects linear model and goes on to illustrate eight common linear models, along with the value of their use in statistics. From this foundation, subsequent chapters introduce concepts pertaining to the linear model, starting with vector space theory and the theory of least-squares estimation. An outline of the Helmert matrix is also presented, along with a thorough explanation of how the ANOVA is created in both typical two-way and higher layout designs, ultimately revealing the distribution theory. Other important topics covered include: Vector space theory The theory of least squares estimation Gauss-Markov theorem Kronecker products Diagnostic and robust methods for linear models Likelihood approaches to estimation A discussion of Bayesian theory is also included for purposes of comparison and contrast, and numerous illustrative exercises assist the reader with uncovering the nature of the models, using both classic and new data sets. Requiring only a working knowledge of basic probability and statistical inference, Linear Models is a valuable book for courses on linear models at the upper-undergraduate and graduate levels. It is also an excellent reference for practitioners who use linear models to conduct research in the fields of econometrics, psychology, sociology, biology, and agriculture.

Book Linear Models with Python

Download or read book Linear Models with Python written by Julian J. Faraway and published by CRC Press. This book was released on 2021-01-08 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Linear Models with R: This book is a must-have tool for anyone interested in understanding and applying linear models. The logical ordering of the chapters is well thought out and portrays Faraway’s wealth of experience in teaching and using linear models. ... It lays down the material in a logical and intricate manner and makes linear modeling appealing to researchers from virtually all fields of study. -Biometrical Journal Throughout, it gives plenty of insight ... with comments that even the seasoned practitioner will appreciate. Interspersed with R code and the output that it produces one can find many little gems of what I think is sound statistical advice, well epitomized with the examples chosen...I read it with delight and think that the same will be true with anyone who is engaged in the use or teaching of linear models. -Journal of the Royal Statistical Society Like its widely praised, best-selling companion version, Linear Models with R, this book replaces R with Python to seamlessly give a coherent exposition of the practice of linear modeling. Linear Models with Python offers up-to-date insight on essential data analysis topics, from estimation, inference and prediction to missing data, factorial models and block designs. Numerous examples illustrate how to apply the different methods using Python. Features: Python is a powerful, open source programming language increasingly being used in data science, machine learning and computer science. Python and R are similar, but R was designed for statistics, while Python is multi-talented. This version replaces R with Python to make it accessible to a greater number of users outside of statistics, including those from Machine Learning. A reader coming to this book from an ML background will learn new statistical perspectives on learning from data. Topics include Model Selection, Shrinkage, Experiments with Blocks and Missing Data. Includes an Appendix on Python for beginners. Linear Models with Python explains how to use linear models in physical science, engineering, social science and business applications. It is ideal as a textbook for linear models or linear regression courses.

Book Linear Models

    Book Details:
  • Author : Debasis Sengupta
  • Publisher : World Scientific
  • Release : 2003
  • ISBN : 9789812564900
  • Pages : 652 pages

Download or read book Linear Models written by Debasis Sengupta and published by World Scientific. This book was released on 2003 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Models: An Integrated Approach aims to provide a clearand deep understanding of the general linear model using simplestatistical ideas. Elegant geometric arguments are also invoked asneeded and a review of vector spaces and matrices is provided to makethe treatment self-contained.

Book Linear Models with R

Download or read book Linear Models with R written by Julian J. Faraway and published by CRC Press. This book was released on 2016-04-19 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models

Book Linear Regression

    Book Details:
  • Author : Damodar N. Gujarati
  • Publisher : SAGE Publications
  • Release : 2018-06-14
  • ISBN : 1544336551
  • Pages : 282 pages

Download or read book Linear Regression written by Damodar N. Gujarati and published by SAGE Publications. This book was released on 2018-06-14 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Damodar N. Gujarati’s Linear Regression: A Mathematical Introduction presents linear regression theory in a rigorous, but approachable manner that is accessible to students in all social sciences. This concise title goes step-by-step through the intricacies, and theory and practice of regression analysis. The technical discussion is provided in a clear style that doesn’t overwhelm the reader with abstract mathematics. End-of-chapter exercises test mastery of the content and advanced discussion of some of the topics is offered in the appendices.

Book Regression Analysis and Linear Models

Download or read book Regression Analysis and Linear Models written by Richard B. Darlington and published by Guilford Publications. This book was released on 2016-08-22 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.

Book Advanced Linear Models

Download or read book Advanced Linear Models written by Shein-Chung Chow and published by Routledge. This book was released on 2018-05-04 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work details the statistical inference of linear models including parameter estimation, hypothesis testing, confidence intervals, and prediction. The authors discuss the application of statistical theories and methodologies to various linear models such as the linear regression model, the analysis of variance model, the analysis of covariance model, and the variance components model.

Book Plane Answers to Complex Questions

Download or read book Plane Answers to Complex Questions written by Ronald Christensen and published by Springer Science & Business Media. This book was released on 1996 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a wide-ranging introduction to the use of linear models in analyzing data. The author's emphasis is on providing a unified treatment of the analysis of variance models and regression models by presenting a vector space and projections approach to the subject. Every chapter comes with numerous exercises and examples, which will make it ideal for a graduate-level course on this subject.