EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Linear Algebra and Learning from Data

Download or read book Linear Algebra and Learning from Data written by Gilbert Strang and published by Wellesley-Cambridge Press. This book was released on 2019-01-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Book Foundations of Data Science

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

Book Linear Algebra for Data Science  Machine Learning  and Signal Processing

Download or read book Linear Algebra for Data Science Machine Learning and Signal Processing written by Jeffrey A. Fessler and published by Cambridge University Press. This book was released on 2024-04-30 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master matrix methods via engaging data-driven applications, aided by classroom-tested quizzes, homework exercises and online Julia demos.

Book Introduction to Applied Linear Algebra

Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Book Linear Algebra Tools for Data Mining

Download or read book Linear Algebra Tools for Data Mining written by Dan A. Simovici and published by World Scientific. This book was released on 2012 with total page 878 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume presents the foundations of linear algebra ideas and techniques applied to data mining and related fields. Linear algebra has gained increasing importance in data mining and pattern recognition, as shown by the many current data mining publications, and has a strong impact in other disciplines like psychology, chemistry, and biology. The basic material is accompanied by more than 550 exercises and supplements, many accompanied with complete solutions and MATLAB applications. Key Features Integrates the mathematical developments to their applications in data mining without sacrificing the mathematical rigor Presented applications with full mathematical justifications and are often accompanied by MATLAB code Highlights strong links between linear algebra, topology and graph theory because these links are essentially important for applications A self-contained book that deals with mathematics that is immediately relevant for data mining Book jacket.

Book Coding the Matrix

Download or read book Coding the Matrix written by Philip N. Klein and published by . This book was released on 2013-07 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program" A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon.

Book Linear Algebra and Optimization for Machine Learning

Download or read book Linear Algebra and Optimization for Machine Learning written by Charu C. Aggarwal and published by Springer Nature. This book was released on 2020-05-13 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.

Book Linear Algebra in Data Science

Download or read book Linear Algebra in Data Science written by Peter Zizler and published by Springer Nature. This book was released on with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Basics of Linear Algebra for Machine Learning

Download or read book Basics of Linear Algebra for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-01-24 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this laser-focused Ebook, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more.

Book Linear Algebra For Data Science

Download or read book Linear Algebra For Data Science written by Moshe Haviv and published by World Scientific. This book was released on 2023-06-28 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as an introduction to linear algebra for undergraduate students in data science, statistics, computer science, economics, and engineering. The book presents all the essentials in rigorous (proof-based) manner, describes the intuition behind the results, while discussing some applications to data science along the way.The book comes with two parts, one on vectors, the other on matrices. The former consists of four chapters: vector algebra, linear independence and linear subspaces, orthonormal bases and the Gram-Schmidt process, linear functions. The latter comes with eight chapters: matrices and matrix operations, invertible matrices and matrix inversion, projections and regression, determinants, eigensystems and diagonalizability, symmetric matrices, singular value decomposition, and stochastic matrices. The book ends with the solution of exercises which appear throughout its twelve chapters.

Book Matrix Algebra

    Book Details:
  • Author : James E. Gentle
  • Publisher : Springer Science & Business Media
  • Release : 2007-07-27
  • ISBN : 0387708723
  • Pages : 536 pages

Download or read book Matrix Algebra written by James E. Gentle and published by Springer Science & Business Media. This book was released on 2007-07-27 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Book Linear Algebra Problem Book

Download or read book Linear Algebra Problem Book written by Paul R. Halmos and published by American Mathematical Soc.. This book was released on 1995-12-31 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Algebra Problem Book can be either the main course or the dessert for someone who needs linear algebraand today that means every user of mathematics. It can be used as the basis of either an official course or a program of private study. If used as a course, the book can stand by itself, or if so desired, it can be stirred in with a standard linear algebra course as the seasoning that provides the interest, the challenge, and the motivation that is needed by experienced scholars as much as by beginning students. The best way to learn is to do, and the purpose of this book is to get the reader to DO linear algebra. The approach is Socratic: first ask a question, then give a hint (if necessary), then, finally, for security and completeness, provide the detailed answer.

Book Linear Algebra and Its Applications with R

Download or read book Linear Algebra and Its Applications with R written by Ruriko Yoshida and published by CRC Press. This book was released on 2021-06-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book developed from the need to teach a linear algebra course to students focused on data science and bioinformatics programs. These students tend not to realize the importance of linear algebra in applied sciences since traditional linear algebra courses tend to cover mathematical contexts but not the computational aspect of linear algebra or its applications to data science and bioinformatics. The author presents the topics in a traditional course yet offers lectures as well as lab exercises on simulated and empirical data sets. This textbook provides students a theoretical basis which can then be applied to the practical R and Python problems, providing the tools needed for real-world applications. Each section starts with working examples to demonstrate how tools from linear algebra can help solve problems in applied science. These exercises start from easy computations, such as computing determinants of matrices, to practical applications on simulated and empirical data sets with R so that students learn how to get started with R along with computational examples in each section and then they learn how to apply what they learn to problems in applied sciences. This book is designed from first principles to demonstrate the importance of linear algebra through working computational examples with R and python including tutorials on how to install R in the Appendix. If a student has never seen R, they can get started without any additional help. Since Python is one of the most popular languages in data science, optimization, and computer science, code supplements are available for students who feel more comfortable with Python. R is used primarily for computational examples to develop student’s practical computational skills. Table of Contents Preface List of Figures List of Tables 1. Systems of Linear Equations and Matrices 2. Matrix Arithmetic 3. Deteminants 4. Vector Spaces 5. Inner Product Space 6. Eigen values and Eigen vectors 7. Linear Regression 8. Linear Programming Network Analysis Appendices A) Introduction to RStudio via Amazon Web Service (AWS) B) Introduction to R Bibliography Index Biography Dr. Ruriko Yoshida is an Associate Professor of Operations Research at the Naval Postgraduate School. She received her Ph.D. in Mathematics from the University of California, Davis. Her research topics cover a wide variety of areas: applications of algebraic combinatorics to statistical problems such as statistical learning on non-Euclidean spaces, sensor networks, phylogenetics, and phylogenomics. She teaches courses in statistics, stochastic models, probability, and data science.

Book Data Science and Machine Learning

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Book Linear Algebra Done Right

    Book Details:
  • Author : Sheldon Axler
  • Publisher : Springer Science & Business Media
  • Release : 1997-07-18
  • ISBN : 9780387982595
  • Pages : 276 pages

Download or read book Linear Algebra Done Right written by Sheldon Axler and published by Springer Science & Business Media. This book was released on 1997-07-18 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.

Book Linear Algebra and Matrix Analysis for Statistics

Download or read book Linear Algebra and Matrix Analysis for Statistics written by Sudipto Banerjee and published by CRC Press. This book was released on 2014-06-06 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.