EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lifetime Prediction and Simulation Models of Different Energy Storage Devices

Download or read book Lifetime Prediction and Simulation Models of Different Energy Storage Devices written by Julia Kowal and published by MDPI. This book was released on 2020-11-13 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy storage is one of the most important enablers for the transformation to a sustainable energy supply with greater mobility. For vehicles, but also for many stationary applications, the batteries used for energy storage are very flexible but also have a rather limited lifetime compared to other storage principles. This Special Issue is a collection of articles that collectively address the following questions: What are the factors influencing the aging of different energy storage technologies? How can we extend the lifetime of storage systems? How can the aging of an energy storage be detected and predicted? When do we have to exchange the storage device? The articles cover lithium-ion batteries, supercaps, and flywheels.

Book Lifetime Prediction and Simulation Models of Different Energy Storage Devices

Download or read book Lifetime Prediction and Simulation Models of Different Energy Storage Devices written by Julia Kowal and published by . This book was released on 2020 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy storage is one of the most important enablers for the transformation to a sustainable energy supply with greater mobility. For vehicles, but also for many stationary applications, the batteries used for energy storage are very flexible but also have a rather limited lifetime compared to other storage principles. This Special Issue is a collection of articles that collectively address the following questions: What are the factors influencing the aging of different energy storage technologies? How can we extend the lifetime of storage systems? How can the aging of an energy storage be detected and predicted? When do we have to exchange the storage device? The articles cover lithium-ion batteries, supercaps, and flywheels.

Book Battery System Modeling

Download or read book Battery System Modeling written by Shunli Wang and published by Elsevier. This book was released on 2021-06-23 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates. Explains how to model battery systems, including equivalent, electrical circuit and electrochemical nernst modeling Includes comprehensive coverage of battery state estimation methods, including state of charge estimation, energy prediction, power evaluation and health estimation Provides a dedicated chapter on active control strategies

Book Batteries and Supercapacitors Aging

Download or read book Batteries and Supercapacitors Aging written by Pascal Venet and published by MDPI. This book was released on 2020-04-15 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrochemical energy storage is a key element of systems in a wide range of sectors, such as electro-mobility, portable devices, and renewable energy. The energy storage systems (ESSs) considered here are batteries, supercapacitors, and hybrid components such as lithium-ion capacitors. The durability of ESSs determines the total cost of ownership, the global impacts (lifecycle) on a large portion of these applications and, thus, their viability. Understanding ESS aging is a key to optimizing their design and usability in terms of their intended applications. Knowledge of ESS aging is also essential to improve their dependability (reliability, availability, maintainability, and safety). This Special Issue includes 12 research papers and 1 review article focusing on battery, supercapacitor, and hybrid capacitor aging.

Book Handbook on Battery Energy Storage System

Download or read book Handbook on Battery Energy Storage System written by Asian Development Bank and published by Asian Development Bank. This book was released on 2018-12-01 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.

Book Electrochemical Power Sources  Fundamentals  Systems  and Applications

Download or read book Electrochemical Power Sources Fundamentals Systems and Applications written by Julia Kowal and published by Elsevier. This book was released on 2022-07-15 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowing the behaviour of batteries is very important for different reasons. In applications such as a vehicle energy management, it is important to know the state of the battery, e.g. what is the remaining driving range or when should the battery be replaced. Also, for the system design, simulation models are important, e.g. to design a suitable cooling system that prevents the battery from dangerous states. Simulation models of secondary batteries: From quantum physics to techno-economic scale gives an overview over the different modelling approaches for battery simulation models used for different purposes, such as battery pack design or state of charge estimation. Solutions for different applications are presented. A classification into electrical, thermal, ageing models is given as well as according to the degree of precision ranging from physico-chemical, over impedance based to energy flow or empirical models with their specific advantages and disadvantages. Overviews many different battery modelling approaches Outlines how to choose the best model for a given purpose Offers a complete range from particle to system model Includes electrical, thermal and ageing models Discusses limitations of the modelling approaches

Book Gaussian Processes for Machine Learning

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Book Energy Storage Devices

Download or read book Energy Storage Devices written by M. Taha Demirkan and published by BoD – Books on Demand. This book was released on 2019-12-18 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy storage will be a very important part of the near future, and its effectiveness will be crucial for most future technologies. Energy can be stored in several different ways and these differ in terms of the type and the conversion method of the energy. Among those methods; chemical, mechanical, and thermal energy storage are some of the most favorable methods for containing energy. Current energy storage devices are still far from meeting the demands of new technological developments. Therefore, much effort has been put to improving the performance of different types of energy storage technologies in the last few decades.

Book Modeling and Simulation of Electricity Systems for Transport and Energy Storage

Download or read book Modeling and Simulation of Electricity Systems for Transport and Energy Storage written by Regina Lamedica and published by . This book was released on 2021 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises five peer-reviewed articles covering original research articles on the modeling and simulation of electricity systems for transport and energy storage. The topics include: 1 - Optimal siting and sizing methodology to design an energy storage system (ESS) for railway lines; 2 - Technical-economic comparison between a 3 kV DC railway and the use of trains with on-board storage systems; 3 - How to improve electrical feeding substations, by changing transformer technology and by installing dedicated high-power-oriented storage systems; 4 - Algorithm applied to a vehicle-to-grid (V2G) technology. 5 - Thermal investigation and optimization of an air-cooled lithium-ion battery pack.

Book Energy Storage Systems  Fundamentals  Classification and a Technical Comparative

Download or read book Energy Storage Systems Fundamentals Classification and a Technical Comparative written by José Manuel Andújar Márquez and published by Springer Nature. This book was released on 2023-09-12 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines different energy storage technologies, empowering the reader to make informed decisions on which system is best suited for their specific needs. Decarbonization is a crucial step towards a sustainable future, and renewable energy plays a vital role in making this transition possible. However, the intermittency of some sources such as wind and solar energy requires the use of energy storage systems. The book contains a detailed study of the fundamental principles of energy storage operation, a mathematical model for real-time state-of-charge analysis, and a technical analysis of the latest research trends, providing a comprehensive guide to energy storage systems. From battery storage systems to hydrogen storage systems, this book provides the tools to effectively manage energy and ensure that excess energy is utilized during times of deficit and signposts the likely future development and lines of research enquiry for each technology discussed. The book is of interest to researchers and professionals in energy, and engineers interested in the transition to more sustainable energy systems.

Book Emerging Advanced Energy Storage Systems

Download or read book Emerging Advanced Energy Storage Systems written by Marcelo Gustavo Molina and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes bibliographical references (p. [135]-141) and index.

Book Simulation on Rational Design for High Performance Electrochemical Energy Storage

Download or read book Simulation on Rational Design for High Performance Electrochemical Energy Storage written by Pengcheng Xu and published by . This book was released on 2020 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: As an essential element of sustainable energy technologies, electrochemical energy storage makes a significant contribution to the development of many industry fields such as consumer electronics and electric vehicles. Meanwhile, the complicated and evolving application markets raise new challenges to electrochemical energy storage systems in all-rounded performance matrices including energy density, operating conditions, durability and so on. There is a great amount of relevant research in various scales and directions, e.g., material development, electrochemical analysis and reliability testing. Modeling and simulation, together with rational material/system design, explores the internal processes for performance matrices of electrochemical systems, characterizes key improvement achieved by the implementation of design, and predicts future values/tendencies of significant variables based on learned patterns for system monitoring. This dissertation could be outlined with the following three parts:1. Explaining transient responses of proton exchange membrane fuel cells (with tungsten oxide addition to anode). An equivalent circuit model is employed to characterize dynamic responses of PEMFCs under transient operations and the improved power performance achieved by a system design of integrating a WO3 layer with anodes. To explain what is going on within the fuel cell system and the contribution of the system design, a mathematical model simulating gas transport within the gas diffusion layer attributes voltage undershoot under transient operations to unbalance between the demand of gas at the catalyst layer and the supply at gas flow channel (through the gas diffusion layer). Moreover, it is also observed that the addition of WO3 layers increases the capacity of the double layer, buffers the change of reaction current density, mitigates the transient gas demand-supply unbalance, and thus improves power performance under transient operations. 2. Explaining rate/cycling performances of lithium-ion batteries (with metal-organic frameworks addition to electrolyte). Lithium ion transference number plays an important role in research on high-rate/cycling performances of lithium-ion batteries. Firstly, to show how lithium ion transference number might be improved via rational design of MOF additions, heterogeneous geometries (pattern/density/location) to the separator/electrolytes are discussed. Secondly, to explore how lithium ion transference number affects rate performances of lithium ion batteries, a mathematical model is studied for half-cells to indicate the links among lithium ion transference number, electrolyte salt concentration gradient, concentration polarization and utilizable capacity. Thirdly, to explore how lithium ion transference number affects cycling performances of lithium ion batteries, mechanisms of solid-electrolyte interphase layer formation is introduced to the mathematical model for a full-cell, which discusses the overpotential of parasitic SEI reactions and loss of cyclable lithium under stable and dynamic cycling tests. 3. Predicting the remaining useful lives of lithium-ion batteries under cycling charge/discharge operations. Efficient and accurate remaining useful life prediction is a key factor for reliable and safe usage of lithium-ion batteries. A long short-term memory recurrent neural network model, by extracting features of discharge capacity variation under specific voltages due to capacity degradation, is trained to learn from sequential data of discharge capacities at various cycles and voltages and to work as a cycle life predictor for battery cells cycled under different operating conditions. Using experimental data of first 60 - 80 cycles, the model can achieve promising prediction accuracy on test sets of about 80 samples. Overall, this dissertation applies models for proton exchange membrane fuel cell and lithium-ion battery with different techniques to simulate internal processes occurring in a component/the entire system, and explains the reason why adopted design strategies mitigate certain types of performance bottlenecks or utilizes big data to learning from time series and make predictions on remaining useful lives. With these works, some inspirations might be provided for understanding methods to enhance transient and/or high-rate performances of electrochemical energy storage systems.

Book Recent Advances in Sustainable Energy and Intelligent Systems

Download or read book Recent Advances in Sustainable Energy and Intelligent Systems written by Kang Li and published by Springer Nature. This book was released on 2021-10-21 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set CCIS 1467, CCIS 1468, and CCIS 1469 constitutes the thoroughly refereed proceedings of the 7th International Conference on Life System Modeling and Simulation, LSMS 2021, and of the 7th International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2021, held in Hangzhou, China, in October 2021. The 159 revised papers presented were carefully reviewed and selected from over 430 submissions. The papers of this volume are organized in topical sections on: Medical Imaging and Analysis Using Intelligence Computing; Biomedical signal processing, imaging, visualization and surgical robotics; Computational method in taxonomy study and neural dynamics; Intelligent medical apparatus, clinical applications and intelligent design of biochips; Power and Energy Systems; Computational Intelligence in Utilization of Clean and Renewable Energy Resources, and Intelligent Modelling, Control and Supervision for Energy Saving and Pollution Reduction; Intelligent Methods in Developing Electric Vehicles, Engines and Equipment; Intelligent Control Methods in Energy Infrastructure Development and Distributed Power Generation Systems; Intelligent Modeling, Simulation and Control of Power Electronics and Power Networks; Intelligent Techniques for Sustainable Energy and Green Built Environment, Water Treatment and Waste Management; Intelligent Robot and Simulation; Intelligent Data Processing, Analysis and Control in Complex Systems; Advanced Neural Network Theory and Algorithms; Advanced Computational Methods and Applications; Fuzzy, Neural, and Fuzzy-neuro Hybrids; Intelligent Modelling, Monitoring, and Control of Complex Nonlinear Systems; Intelligent manufacturing, autonomous systems, intelligent robotic systems; Computational Intelligence and Applications.

Book Battery Management Systems  Volume I  Battery Modeling

Download or read book Battery Management Systems Volume I Battery Modeling written by Gregory L. Plett and published by Artech House. This book was released on 2015-09-01 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-scale battery packs are needed in hybrid and electric vehicles, utilities grid backup and storage, and frequency-regulation applications. In order to maximize battery-pack safety, longevity, and performance, it is important to understand how battery cells work. This first of its kind new resource focuses on developing a mathematical understanding of how electrochemical (battery) cells work, both internally and externally. This comprehensive resource derives physics-based micro-scale model equations, then continuum-scale model equations, and finally reduced-order model equations. This book describes the commonly used equivalent-circuit type battery model and develops equations for superior physics-based models of lithium-ion cells at different length scales. This resource also presents a breakthrough technology called the “discrete-time realization algorithm” that automatically converts physics-based models into high-fidelity approximate reduced-order models.

Book Energy Storage Devices for Renewable Energy Based Systems

Download or read book Energy Storage Devices for Renewable Energy Based Systems written by Nihal Kularatna and published by Academic Press. This book was released on 2021-05-13 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy Storage Devices for Renewable Energy-Based Systems: Rechargeable Batteries and Supercapacitors, Second Edition is a fully revised edition of this comprehensive overview of the concepts, principles and practical knowledge on energy storage devices. The book gives readers the opportunity to expand their knowledge of innovative supercapacitor applications, comparing them to other commonly used energy storage devices. With new application case studies and definitions, this resource will strengthen your understanding of energy storage from a practical, applications-based point-of-view without requiring detailed examination of underlying electrochemical equations. Users will learn about various design approaches and real-time applications of ESDs. Electronic engineering experts and system designers will find this book useful to deepen their understanding on the application of electronic storage devices, circuit topologies, and industrial device data sheets to develop new applications. The book is also intended to be used as a textbook for masters and doctoral students who want to enhance their knowledge and understanding the concepts of renewable energy sources and state-of-the-art ESDs. Provides explanations of the latest energy storage devices in a practical applications-based context Includes examples of circuit designs that optimize the use of supercapacitors Highlights the unique benefits of these devices

Book Formal Modeling and Analysis of Timed Systems

Download or read book Formal Modeling and Analysis of Timed Systems written by Sriram Sankaranarayanan and published by Springer. This book was released on 2015-08-21 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 13th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2015, held in Madrid, Spain, in September 2015. The conference was organized under the umbrella of Madrid Meet 2015, a one week event focussing on the areas of formal and quantitative analysis of systems, performance engineering, computer safety, and industrial critical applications. The 19 papers presented in this volume were carefully reviewed and selected from 42 initial submissions.

Book NASA Formal Methods

    Book Details:
  • Author : Jyotirmoy V. Deshmukh
  • Publisher : Springer Nature
  • Release : 2022-05-19
  • ISBN : 3031067738
  • Pages : 848 pages

Download or read book NASA Formal Methods written by Jyotirmoy V. Deshmukh and published by Springer Nature. This book was released on 2022-05-19 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 14th International Symposium on NASA Formal Methods, NFM 2022, held in Pasadena, USA, during May 24-27, 2022. The 33 full and 6 short papers presented in this volume were carefully reviewed and selected from 118submissions. The volume also contains 6 invited papers. The papers deal with advances in formal methods, formal methods techniques, and formal methods in practice. The focus on topics such as interactive and automated theorem proving; SMT and SAT solving; model checking; use of machine learning and probabilistic reasoning in formal methods; formal methods and graphical modeling languages such as SysML or UML; usability of formal method tools and application in industry, etc.