EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lifetime Analysis of Fusion reactor Components

Download or read book Lifetime Analysis of Fusion reactor Components written by and published by . This book was released on 1983 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-dimensional computer code has been developed to examine the lifetime of first-wall and impurity-control components. The code incorporates the operating and design parameters, the material characteristics, and the appropriate failure criteria for the individual components. The major emphasis of the modelling effort has been to calculate the temperature-stress-strain-radiation effects history of a component so that the synergystic effects between sputtering erosion, swelling, creep, fatigue, and crack growth can be examined. The general forms of the property equations are the same for all materials in order to provide the greatest flexibility for materials selection in the code. The code is capable of determining the behavior of a plate, composed of either a single or dual material structure, that is either totally constrained or constrained from bending but not from expansion. The code has been utilized to analyze the first walls for FED/INTOR and DEMO.

Book Lifetime Analysis of Plasma Side Components

Download or read book Lifetime Analysis of Plasma Side Components written by R. F. Mattas and published by . This book was released on 1985 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fusion Reactor Design

    Book Details:
  • Author : Takashi Okazaki
  • Publisher : John Wiley & Sons
  • Release : 2022-03-14
  • ISBN : 3527414037
  • Pages : 644 pages

Download or read book Fusion Reactor Design written by Takashi Okazaki and published by John Wiley & Sons. This book was released on 2022-03-14 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fusion Reactor Design Provides a detailed overview of fusion reactor design, written by an international leader in the field Nuclear fusion—generating four times as much energy from the same mass of fuel as nuclear fission—is regarded by its proponents as a viable, eco-friendly alternative to gas-fired, coal-fired, and conventional power plants. Although the physics of nuclear fusion is essentially understood, the construction of prototype reactors currently presents significant technical challenges. Fusion Reactor Design: Plasma Physics, Fuel Cycle System, Operation and Maintenance provides a systematic, reader-friendly introduction to the characteristics, components, and critical systems of fusion reactors. Focusing on the experimental Tokamak reactor, this up-to-date resource covers relevant plasma physics, necessary technology, analysis methods, and the other aspects of fusion reactors. In-depth chapters include derivations of key formulas, figures highlighting physical and structural characteristics of fusion reactors, illustrative numerical calculations, practical design examples, and more. Designed to help researchers and engineers understand and overcome the technological difficulties in making fusion power a reality, this volume: Provides in-depth knowledge on controlled thermonuclear fusion and its large-scale application in both current fusion reactors and future test reactors Covers plasma analysis, plasma equilibrium and stability, and plasma transport and confinement, and safety considerations Explains each component of fusion reactors, including divertors, superconducting coils, plasma heating and current drive systems, and vacuum vessels Discusses safety aspects of fusion reactors as well as computational approaches to safety aspects of fusion reactors Fusion Reactor Design: Plasma Physics, Fuel Cycle System, Operation and Maintenance is required reading for undergraduate and graduate students studying plasma physics and fusion reactor technology, and an important reference for nuclear physicists, nuclear reactor manufacturers, and power engineers involved in fusion reactor research and advanced technology development.

Book Fusion Component Lifetime Analysis

Download or read book Fusion Component Lifetime Analysis written by Richard F. Mattas and published by . This book was released on 1982 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fusion Energy Update

Download or read book Fusion Energy Update written by and published by . This book was released on 1979 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1994 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Structural Alloys for Nuclear Energy Applications

Download or read book Structural Alloys for Nuclear Energy Applications written by Robert Odette and published by Newnes. This book was released on 2019-08-15 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Book The Impact of Inelastic Deformation  Radiation Effects  and Fatigue Damage on Fusion Reactor First Wall Lifetime

Download or read book The Impact of Inelastic Deformation Radiation Effects and Fatigue Damage on Fusion Reactor First Wall Lifetime written by Robert David Watson and published by . This book was released on 1981 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fusion component Lifetime Analysis

Download or read book Fusion component Lifetime Analysis written by and published by . This book was released on 1982 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-dimensional computer code has been developed to examine the lifetime of first-wall and impurity-control components. The code incorporates the operating and design parameters, the material characteristics, and the appropriate failure criteria for the individual components. The major emphasis of the modeling effort has been to calculate the temperature-stress-strain-radiation effects history of a component so that the synergystic effects between sputtering erosion, swelling, creep, fatigue, and crack growth can be examined. The general forms of the property equations are the same for all materials in order to provide the greatest flexibility for materials selection in the code. The individual coefficients within the equations are different for each material. The code is capable of determining the behavior of a plate, composed of either a single or dual material structure, that is either totally constrained or constrained from bending but not from expansion. The code has been utilized to analyze the first walls for FED/INTOR and DEMO and to analyze the limiter for FED/INTOR.

Book Renewable Energies and CO2

Download or read book Renewable Energies and CO2 written by Ricardo Guerrero-Lemus and published by Springer Science & Business Media. This book was released on 2012-09-14 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing up-to-date numerical data across a range of topics related to renewable energy technologies, Renewable Energies and CO2 offers a one-stop source of key information to engineers, economists and all other professionals working in the energy and climate change sectors. The most relevant up-to-date numerical data are exposed in 201 tables and graphs, integrated in terms of units and methodology, and covering topics such as energy system capacities and lifetimes, production costs, energy payback ratios, carbon emissions, external costs, patents and literature statistics. The data are first presented and then analyzed to project potential future grid, heat and fuel parity scenarios, as well as future technology tendencies in different energy technological areas. Innovative highlights and descriptions of preproduction energy systems and components from the past four years have been gathered from selected journals and international energy departments from G20 countries. As the field develops, readers are invited and encouraged to contact the authors for feedback and comments. The ongoing data collection and analysis will be used – after proper acknowledgment of contributors - to develop new editions. In this way, it is ensured that Renewable Energies and CO2 will remain an up-to-date resource for all those working with or involved in renewable energy, climate change, energy storage, carbon capture and smart grids.

Book Magnetic Fusion Technology

Download or read book Magnetic Fusion Technology written by Thomas J. Dolan and published by Springer Science & Business Media. This book was released on 2014-02-10 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Book Predictive Methods and Analysis of Time Dependent Tritium Flow Rates and Inventories in Fusion Systems

Download or read book Predictive Methods and Analysis of Time Dependent Tritium Flow Rates and Inventories in Fusion Systems written by marco riva and published by . This book was released on 2020 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: In nuclear fusion reactors, tritium dynamics plays a dominant role. An unprecedented amount of tritium is consumed in Deuterium-Tritium (D-T) nuclear fusion reactors, ~0.5 kg per day for 3 GW fusion power. However, tritium is radioactive, has short half-life (~12.33 years), and is present in nature in negligible concentration. Because of tritium scarcity, future fusion power reactors must be self-sufficient, i.e. the reactor must have a closed fuel cycle where tritium is produced in greater amounts than it is consumed. Furthermore, nuclear fusion reactors must accumulate and provide tritium start-up inventory for the next generation of fusion power plants, since natural reserves of tritium are very limited. Moreover, because of its radioactive nature, tritium presents a serious hazard to the personnel and has implications to safety and nuclear licensing. Accurate predictive models of the nuclear fusion fuel cycle are required to effectively design the fuel cycle components, understand tritium dynamics in the fusion fuel cycle, and determine the technology and physics requirements to attain tritium self-sufficiency. Moreover, accurate predictions of tritium inventories and flow rates within fusion components, and estimations of tritium releases to the environment are necessary for nuclear licensing. In this dissertation, two numerical models are developed to perform tritium transport assessment within fusion systems. First, a high fidelity numerical model is developed to simulate time-dependent tritium transport within the reactor outer fuel cycle (OFC). Detailed (high resolution) component-level models, where constitutive transport equations are implemented in COMSOL Multiphysics and solved for various fusion sub-systems, are integrated into system-level with the use of MATLAB/Simulink S-Functions to reproduce typical OFC tritium streams. The model is applied to the KOrean Helium Cooled Ceramic Reflector Test Blanket System (KO-HCCR TBS) which will be tested in the International Thermonuclear Experimental Reactor (ITER). However, the developed model offers some flexibility and can be applied to other Test Blanket Module (TBM) designs. Second, the overall fusion fuel cycle is modeled analytically by a system of time-dependent zero-dimensional ordinary differential equations with the tritium mean residence time method. This technique yields results useful for understanding the overall fuel cycle dynamics and the importance of certain components and parameters. The analysis of tritium inventories and flow rates is extended to determine the physics and technology requirements to attain tritium self-sufficiency. In particular, the state-of-the-art plasma physics and technology parameters (e.g. tritium burn fraction, fueling efficiency, processing times, etc.) and up-to-date fuel cycle design are considered in the analysis. The tritium self-sufficiency assessment and tritium start-up inventory evaluation are performed to investigate: (i) the effect of the reactor operating scenario and availability factor, e.g. to account for random failures and ordinary maintenance, (ii) the scenarios for commercialization, e.g. risk associated with tritium reserve inventory reduction, (iii) the penetration of fusion energy into power market, e.g. effect of the doubling time, and (iv) the effect of reactor power on tritium start-up inventory, e.g. for plasma-based test facilities, DEMOnstration reactors (DEMO), and power reactors. The results highlight the physics and technology R&D requirements to attain fuel self-sufficiency in fusion reactors.

Book Fundamentals of Magnetic Thermonuclear Reactor Design

Download or read book Fundamentals of Magnetic Thermonuclear Reactor Design written by Vasilij A. Glukhikh and published by Woodhead Publishing. This book was released on 2018-05-21 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Magnetic Thermonuclear Reactor Design is a comprehensive resource on fusion technology and energy systems written by renowned scientists and engineers from the Russian nuclear industry. It brings together a wealth of invaluable experience and knowledge on controlled thermonuclear fusion (CTF) facilities with magnetic plasma confinement – from the first semi-commercial tokamak T-3, to the multi-billion international experimental thermonuclear reactor ITER, now in construction in France. As the INTOR and ITER projects have made an immense contribution in the past few decades, this book focuses on its practical engineering aspects and the basics of technical physics and electrical engineering. Users will gain an understanding of the key ratios between plasma and technical parameters, design streamlining algorithms and engineering solutions. - Written by a team of qualified experts who have been involved in the design of thermonuclear reactors for over 50 years - Outlines the most important features of the ITER project in France which is building the largest tokamak, including the design, material selection, safety and economic considerations - Includes data on how to design magnetic fusion reactors using CAD tools, along with relevant regulatory documents

Book Fusion Reactor Systems Studies  Progress Report for the Period November 1  1996  October 31  1997  and Final Report

Download or read book Fusion Reactor Systems Studies Progress Report for the Period November 1 1996 October 31 1997 and Final Report written by and published by . This book was released on 1997 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: During FY97, the University of Wisconsin Fusion Technology Institute personnel have participated in the ARIES-RS and the ARIES-ST projects. The main areas of effort are: (1) neutronics analysis; (2) shielding of components and personnel; (3) neutron wall loading distribution; (4) radiation damage to in-vessel components; (5) components lifetimes; (6) embrittled materials designs issues; (7) stress and structural analysis; (8) activation, LOCA, and safety analysis; (9) support and fabrication of components; (10) vacuum system; and (11) maintenance. Progress made in these areas are summarized.

Book STARFIRE

Download or read book STARFIRE written by and published by . This book was released on 1980 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Assessment of the Prospects for Inertial Fusion Energy

Download or read book An Assessment of the Prospects for Inertial Fusion Energy written by National Research Council and published by National Academies Press. This book was released on 2013-07-05 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: The potential for using fusion energy to produce commercial electric power was first explored in the 1950s. Harnessing fusion energy offers the prospect of a nearly carbon-free energy source with a virtually unlimited supply of fuel. Unlike nuclear fission plants, appropriately designed fusion power plants would not produce the large amounts of high-level nuclear waste that requires long-term disposal. Due to these prospects, many nations have initiated research and development (R&D) programs aimed at developing fusion as an energy source. Two R&D approaches are being explored: magnetic fusion energy (MFE) and inertial fusion energy (IFE). An Assessment of the Prospects for Inertial Fusion Energy describes and assesses the current status of IFE research in the United States; compares the various technical approaches to IFE; and identifies the scientific and engineering challenges associated with developing inertial confinement fusion (ICF) in particular as an energy source. It also provides guidance on an R&D roadmap at the conceptual level for a national program focusing on the design and construction of an inertial fusion energy demonstration plant.