Download or read book Lie Sphere Geometry written by Thomas E. Cecil and published by Springer Science & Business Media. This book was released on 2007-11-26 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thomas Cecil is a math professor with an unrivalled grasp of Lie Sphere Geometry. Here, he provides a clear and comprehensive modern treatment of the subject, as well as its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry.
Download or read book Lie Sphere Geometry written by Thomas E. Cecil and published by Springer Science & Business Media. This book was released on 2007-10-29 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thomas Cecil is a math professor with an unrivalled grasp of Lie Sphere Geometry. Here, he provides a clear and comprehensive modern treatment of the subject, as well as its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry.
Download or read book The Universe of Quadrics written by Boris Odehnal and published by Springer. This book was released on 2020-04-29 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Universe of Quadrics This text presents the theory of quadrics in a modern form. It builds on the previously published book "The Universe of Conics", including many novel results that are not easily accessible elsewhere. As in the conics book, the approach combines synthetic and analytic methods to derive projective, affine, and metrical properties, covering both Euclidean and non-Euclidean geometries. While the history of conics is more than two thousand years old, the theory of quadrics began to develop approximately three hundred years ago. Quadrics play a fundamental role in numerous fields of mathematics and physics, their applications ranging from mechanical engineering, architecture, astronomy, and design to computer graphics. This text will be invaluable to undergraduate and graduate mathematics students, those in adjacent fields of study, and anyone with a deeper interest in geometry. Complemented with about three hundred fifty figures and photographs, this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises.
Download or read book Lie Groups and Algebras with Applications to Physics Geometry and Mechanics written by D.H. Sattinger and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.
Download or read book A Treatise on the Circle and the Sphere written by Julian Lowell Coolidge and published by . This book was released on 1916 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Geometry of Hypersurfaces written by Thomas E. Cecil and published by Springer. This book was released on 2015-10-30 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.
Download or read book Ricci Flow and the Sphere Theorem written by Simon Brendle and published by American Mathematical Soc.. This book was released on 2010 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deals with the Ricci flow, and the convergence theory for the Ricci flow. This title focuses on preserved curvature conditions, such as positive isotropic curvature. It is suitable for graduate students and researchers.
Download or read book Lie Sphere Geometry written by Thomas E. Cecil and published by . This book was released on 2014-01-15 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematics A Very Short Introduction written by Timothy Gowers and published by Oxford Paperbacks. This book was released on 2002-08-22 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this volume is to explain the differences between research-level mathematics and the maths taught at school. Most differences are philosophical and the first few chapters are about general aspects of mathematical thought.
Download or read book Experiencing Geometry written by David Wilson Henderson and published by Prentice Hall. This book was released on 2005 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The distinctive approach of Henderson and Taimina's volume stimulates readers to develop a broader, deeper, understanding of mathematics through active experience--including discovery, discussion, writing fundamental ideas and learning about the history of those ideas. A series of interesting, challenging problems encourage readers to gather and discuss their reasonings and understanding. The volume provides an understanding of the possible shapes of the physical universe. The authors provide extensive information on historical strands of geometry, straightness on cylinders and cones and hyperbolic planes, triangles and congruencies, area and holonomy, parallel transport, SSS, ASS, SAA, and AAA, parallel postulates, isometries and patterns, dissection theory, square roots, pythagoras and similar triangles, projections of a sphere onto a plane, inversions in circles, projections (models) of hyperbolic planes, trigonometry and duality, 3-spheres and hyperbolic 3-spaces and polyhedra. For mathematics educators and other who need to understand the meaning of geometry.
Download or read book Lectures on Lie Groups written by J. F. Adams and published by University of Chicago Press. This book was released on 1982 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: "[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky
Download or read book Lie Sphere Geometry written by Thomas E. Cecil and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie Sphere Geometry provides a modern treatment of Lie's geometry of spheres, its recent applications and the study of Euclidean space. This book begins with Lie's construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres and Lie sphere transformation. The link with Euclidean submanifold theory is established via the Legendre map. This provides a powerful framework for the study of submanifolds, especially those characterized by restrictions on their curvature spheres. Of particular interest are isoparametric, Dupin and taut submanifolds. These have recently been classified up to Lie sphere transformation in certain special cases through the introduction of natural Lie invariants. The author provides complete proofs of these classifications and indicates directions for further research and wider application of these methods.
Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Download or read book On the Hypotheses Which Lie at the Bases of Geometry written by Bernhard Riemann and published by Birkhäuser. This book was released on 2016-04-19 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.
Download or read book Topology and Geometry written by Glen E. Bredon and published by Springer Science & Business Media. This book was released on 1993-06-24 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS
Download or read book Non Euclidean Laguerre Geometry and Incircular Nets written by Alexander I. Bobenko and published by Springer Nature. This book was released on 2021-10-29 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the example of checkerboard incircular nets. Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets.
Download or read book Beyond Geometry written by Peter Pesic and published by Courier Corporation. This book was released on 2007-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eight essays trace seminal ideas about the foundations of geometry that led to the development of Einstein's general theory of relativity. This is the only English-language collection of these important papers, some of which are extremely hard to find. Contributors include Helmholtz, Klein, Clifford, Poincaré, and Cartan.