EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometry of Lie Groups

    Book Details:
  • Author : B. Rosenfeld
  • Publisher : Springer Science & Business Media
  • Release : 1997-02-28
  • ISBN : 9780792343905
  • Pages : 424 pages

Download or read book Geometry of Lie Groups written by B. Rosenfeld and published by Springer Science & Business Media. This book was released on 1997-02-28 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.

Book Lie Algebras and Algebraic Groups

Download or read book Lie Algebras and Algebraic Groups written by Patrice Tauvel and published by Springer Science & Business Media. This book was released on 2005-08-08 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Devoted to the theory of Lie algebras and algebraic groups, this book includes a large amount of commutative algebra and algebraic geometry so as to make it as self-contained as possible. The aim of the book is to assemble in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included, and some recent results are discussed in the final chapters.

Book Lie Groups  Lie Algebras  and Representations

Download or read book Lie Groups Lie Algebras and Representations written by Brian Hall and published by Springer. This book was released on 2015-05-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette

Book The Lie Algebras su N

Download or read book The Lie Algebras su N written by Walter Pfeifer and published by Birkhäuser. This book was released on 2012-12-06 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie algebras are efficient tools for analyzing the properties of physical systems. Concrete applications comprise the formulation of symmetries of Hamiltonian systems, the description of atomic, molecular and nuclear spectra, the physics of elementary particles and many others. This work gives an introduction to the properties and the structure of the Lie algebras su(n). The book features an elementary (matrix) access to su(N)-algebras, and gives a first insight into Lie algebras. Student readers should be enabled to begin studies on physical su(N)-applications, instructors will profit from the detailed calculations and examples.

Book Abstract Lie Algebras

    Book Details:
  • Author : David J. Winter
  • Publisher : Courier Corporation
  • Release : 2008-01-01
  • ISBN : 048646282X
  • Pages : 162 pages

Download or read book Abstract Lie Algebras written by David J. Winter and published by Courier Corporation. This book was released on 2008-01-01 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid but concise, this account emphasizes Lie algebra's simplicity of theory, offering new approaches to major theorems and extensive treatment of Cartan and related Lie subalgebras over arbitrary fields. 1972 edition.

Book Introduction to Lie Algebras

Download or read book Introduction to Lie Algebras written by K. Erdmann and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

Book Modular Lie Algebras

    Book Details:
  • Author : Geoge B. Seligman
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642949851
  • Pages : 175 pages

Download or read book Modular Lie Algebras written by Geoge B. Seligman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of the structure of Lie algebras over arbitrary fields is now a little more than thirty years old. The first papers, to my know ledge, which undertook this study as an end in itself were those of JACOBSON (" Rational methods in the theory of Lie algebras ") in the Annals, and of LANDHERR ("Uber einfache Liesche Ringe") in the Hamburg Abhandlungen, both in 1935. Over fields of characteristic zero, these thirty years have seen the ideas and results inherited from LIE, KILLING, E. CARTAN and WEYL developed and given new depth, meaning and elegance by many contributors. Much of this work is presented in [47, 64, 128 and 234] of the bibliography. For those who find the rationalization for the study of Lie algebras in their connections with Lie groups, satisfying counterparts to these connections have been found over general non-modular fields, with the substitution of the formal groups of BOCHNER [40] (see also DIEUDONNE [108]), or that of the algebraic linear groups of CHEVALLEY [71], for the usual Lie group. In particular, the relation with algebraic linear groups has stimulated the study of Lie algebras of linear transformations. When one admits to consideration Lie algebras over a base field of positive characteristic (such are the algebras to which the title of this monograph refers), he encounters a new and initially confusing scene.

Book Lie Algebras of Finite and Affine Type

Download or read book Lie Algebras of Finite and Affine Type written by Roger William Carter and published by Cambridge University Press. This book was released on 2005-10-27 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough but relaxed mathematical treatment of Lie algebras.

Book p Adic Lie Groups

    Book Details:
  • Author : Peter Schneider
  • Publisher : Springer Science & Business Media
  • Release : 2011-06-11
  • ISBN : 364221147X
  • Pages : 259 pages

Download or read book p Adic Lie Groups written by Peter Schneider and published by Springer Science & Business Media. This book was released on 2011-06-11 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.

Book An Introduction to Lie Groups and Lie Algebras

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Book Introduction to Lie Algebras and Representation Theory

Download or read book Introduction to Lie Algebras and Representation Theory written by J.E. Humphreys and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

Book Nilpotent Lie Algebras

    Book Details:
  • Author : M. Goze
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-27
  • ISBN : 9401724326
  • Pages : 350 pages

Download or read book Nilpotent Lie Algebras written by M. Goze and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is devoted to the theory of nilpotent Lie algebras and their applications. Nilpotent Lie algebras have played an important role over the last years both in the domain of algebra, considering its role in the classification problems of Lie algebras, and in the domain of differential geometry. Among the topics discussed here are the following: cohomology theory of Lie algebras, deformations and contractions, the algebraic variety of the laws of Lie algebras, the variety of nilpotent laws, and characteristically nilpotent Lie algebras in nilmanifolds. Audience: This book is intended for graduate students specialising in algebra, differential geometry and in theoretical physics and for researchers in mathematics and in theoretical physics.

Book Representations of Lie Algebras

Download or read book Representations of Lie Algebras written by Anthony Henderson and published by Cambridge University Press. This book was released on 2012-08-16 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fresh undergraduate-accessible approach to Lie algebras and their representations.

Book Representations of Algebraic Groups

Download or read book Representations of Algebraic Groups written by Jens Carsten Jantzen and published by American Mathematical Soc.. This book was released on 2003 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.

Book Naive Lie Theory

    Book Details:
  • Author : John Stillwell
  • Publisher : Springer Science & Business Media
  • Release : 2008-12-15
  • ISBN : 038778215X
  • Pages : 230 pages

Download or read book Naive Lie Theory written by John Stillwell and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

Book Lie Groups and Algebraic Groups

Download or read book Lie Groups and Algebraic Groups written by Arkadij L. Onishchik and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.

Book Nearrings  Nearfields And Related Topics

Download or read book Nearrings Nearfields And Related Topics written by Kuncham Syam Prasad and published by World Scientific. This book was released on 2016-11-28 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings.The forward note by G