EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fluctuations of L  vy Processes with Applications

Download or read book Fluctuations of L vy Processes with Applications written by Andreas E. Kyprianou and published by Springer Science & Business Media. This book was released on 2014-01-09 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in the potential analysis of subordinators, Wiener-Hopf theory, the theory of scale functions and their application to ruin theory, as well as including an extensive overview of the classical and modern theory of positive self-similar Markov processes. Each chapter has a comprehensive set of exercises.

Book L  vy Processes

    Book Details:
  • Author : Ole E Barndorff-Nielsen
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461201977
  • Pages : 414 pages

Download or read book L vy Processes written by Ole E Barndorff-Nielsen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.

Book L  vy Processes and Stochastic Calculus

Download or read book L vy Processes and Stochastic Calculus written by David Applebaum and published by Cambridge University Press. This book was released on 2009-04-30 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.

Book Levy Processes in Finance

Download or read book Levy Processes in Finance written by Wim Schoutens and published by Wiley. This book was released on 2003-05-07 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial mathematics has recently enjoyed considerable interest on account of its impact on the finance industry. In parallel, the theory of L?vy processes has also seen many exciting developments. These powerful modelling tools allow the user to model more complex phenomena, and are commonly applied to problems in finance. L?vy Processes in Finance: Pricing Financial Derivatives takes a practical approach to describing the theory of L?vy-based models, and features many examples of how they may be used to solve problems in finance. * Provides an introduction to the use of L?vy processes in finance. * Features many examples using real market data, with emphasis on the pricing of financial derivatives. * Covers a number of key topics, including option pricing, Monte Carlo simulations, stochastic volatility, exotic options and interest rate modelling. * Includes many figures to illustrate the theory and examples discussed. * Avoids unnecessary mathematical formalities. The book is primarily aimed at researchers and postgraduate students of mathematical finance, economics and finance. The range of examples ensures the book will make a valuable reference source for practitioners from the finance industry including risk managers and financial product developers.

Book Malliavin Calculus for L  vy Processes with Applications to Finance

Download or read book Malliavin Calculus for L vy Processes with Applications to Finance written by Giulia Di Nunno and published by Springer Science & Business Media. This book was released on 2008-10-08 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Malliavin calculus as a generalization of the classical non-anticipating Ito calculus to an anticipating setting. It presents the development of the theory and its use in new fields of application.

Book L  vy Processes and Infinitely Divisible Distributions

Download or read book L vy Processes and Infinitely Divisible Distributions written by 健一·佐藤 and published by . This book was released on 1999-11-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes are rich mathematical objects and constitute perhaps the most basic class of stochastic processes with a continuous time parameter. This book is intended to provide the reader with comprehensive basic knowledge of Lévy processes, and at the same time serve as an introduction to stochastic processes in general. No specialist knowledge is assumed and proofs are given in detail. Systematic study is made of stable and semi-stable processes, and the author gives special emphasis to the correspondence between Lévy processes and infinitely divisible distributions. All serious students of random phenomena will find that this book has much to offer. Now in paperback, this corrected edition contains a brand new supplement discussing relevant developments in the area since the book's initial publication.

Book Cambridge Tracts in Mathematics

Download or read book Cambridge Tracts in Mathematics written by Jean Bertoin and published by Cambridge University Press. This book was released on 1996 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1996 book is a comprehensive account of the theory of Lévy processes; aimed at probability theorists.

Book Introductory Lectures on Fluctuations of L  vy Processes with Applications

Download or read book Introductory Lectures on Fluctuations of L vy Processes with Applications written by Andreas E. Kyprianou and published by Springer Science & Business Media. This book was released on 2006-12-18 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook forms the basis of a graduate course on the theory and applications of Lévy processes, from the perspective of their path fluctuations. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical transparency and explicitness.

Book L  vy Matters III

    Book Details:
  • Author : Björn Böttcher
  • Publisher : Springer
  • Release : 2014-01-16
  • ISBN : 3319026844
  • Pages : 215 pages

Download or read book L vy Matters III written by Björn Böttcher and published by Springer. This book was released on 2014-01-16 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents recent developments in the area of Lévy-type processes and more general stochastic processes that behave locally like a Lévy process. Although written in a survey style, quite a few results are extensions of known theorems, and others are completely new. The focus is on the symbol of a Lévy-type process: a non-random function which is a counterpart of the characteristic exponent of a Lévy process. The class of stochastic processes which can be associated with a symbol is characterized, various schemes constructing a stochastic process from a given symbol are discussed, and it is shown how one can use the symbol in order to describe the sample path properties of the underlying process. Lastly, the symbol is used to approximate and simulate Levy-type processes. This is the third volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters. Each volume describes a number of important topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject with special emphasis on the non-Brownian world.

Book L  vy Processes in Lie Groups

Download or read book L vy Processes in Lie Groups written by Ming Liao and published by Cambridge University Press. This book was released on 2004-05-10 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Up-to-the minute research on important stochastic processes.

Book L  vy Processes and Infinitely Divisible Distributions

Download or read book L vy Processes and Infinitely Divisible Distributions written by Sato Ken-Iti and published by Cambridge University Press. This book was released on 1999 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Financial Models with Levy Processes and Volatility Clustering

Download or read book Financial Models with Levy Processes and Volatility Clustering written by Svetlozar T. Rachev and published by John Wiley & Sons. This book was released on 2011-02-08 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth guide to understanding probability distributions and financial modeling for the purposes of investment management In Financial Models with Lévy Processes and Volatility Clustering, the expert author team provides a framework to model the behavior of stock returns in both a univariate and a multivariate setting, providing you with practical applications to option pricing and portfolio management. They also explain the reasons for working with non-normal distribution in financial modeling and the best methodologies for employing it. The book's framework includes the basics of probability distributions and explains the alpha-stable distribution and the tempered stable distribution. The authors also explore discrete time option pricing models, beginning with the classical normal model with volatility clustering to more recent models that consider both volatility clustering and heavy tails. Reviews the basics of probability distributions Analyzes a continuous time option pricing model (the so-called exponential Lévy model) Defines a discrete time model with volatility clustering and how to price options using Monte Carlo methods Studies two multivariate settings that are suitable to explain joint extreme events Financial Models with Lévy Processes and Volatility Clustering is a thorough guide to classical probability distribution methods and brand new methodologies for financial modeling.

Book From L  vy Type Processes to Parabolic SPDEs

Download or read book From L vy Type Processes to Parabolic SPDEs written by Davar Khoshnevisan and published by Birkhäuser. This book was released on 2016-12-22 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the lecture notes from two courses given by Davar Khoshnevisan and René Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis. René Schilling’s notes are an expanded version of his course on Lévy and Lévy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Lévy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Lévy-Itô decomposition. On the other, it identifies the infinitesimal generator of the Lévy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Lévy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc. In turn, Davar Khoshnevisan’s course investigates selected problems in the field of stochastic partial differential equations of parabolic type. More precisely, the main objective is to establish an Invariance Principle for those equations in a rather general setting, and to deduce, as an application, comparison-type results. The framework in which these problems are addressed goes beyond the classical setting, in the sense that the driving noise is assumed to be a multiplicative space-time white noise on a group, and the underlying elliptic operator corresponds to a generator of a Lévy process on that group. This implies that stochastic integration with respect to the above noise, as well as the existence and uniqueness of a solution for the corresponding equation, become relevant in their own right. These aspects are also developed and supplemented by a wealth of illustrative examples.

Book L  vy Processes and Stochastic Calculus

Download or read book L vy Processes and Stochastic Calculus written by David Applebaum and published by Cambridge University Press. This book was released on 2004-07-05 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Financial Modelling with Jump Processes

Download or read book Financial Modelling with Jump Processes written by Peter Tankov and published by CRC Press. This book was released on 2003-12-30 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic

Book Mathematics of the Bond Market

Download or read book Mathematics of the Bond Market written by Michał Barski and published by Cambridge University Press. This book was released on 2020-04-23 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by Lévy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion. The book's key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems.

Book Stochastic Processes for Physicists

Download or read book Stochastic Processes for Physicists written by Kurt Jacobs and published by Cambridge University Press. This book was released on 2010-02-18 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.