Download or read book Leveraging Data Science for Global Health written by Leo Anthony Celi and published by Springer Nature. This book was released on 2020-07-31 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
Download or read book Leveraging Biomedical and Healthcare Data written by Firas Kobeissy and published by Academic Press. This book was released on 2018-11-23 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leveraging Biomedical and Healthcare Data: Semantics, Analytics and Knowledge provides an overview of the approaches used in semantic systems biology, introduces novel areas of its application, and describes step-wise protocols for transforming heterogeneous data into useful knowledge that can influence healthcare and biomedical research. Given the astronomical increase in the number of published reports, papers, and datasets over the last few decades, the ability to curate this data has become a new field of biomedical and healthcare research. This book discusses big data text-based mining to better understand the molecular architecture of diseases and to guide health care decision. It will be a valuable resource for bioinformaticians and members of several areas of the biomedical field who are interested in understanding more about how to process and apply great amounts of data to improve their research. Includes at each section resource pages containing a list of available curated raw and processed data that can be used by researchers in the field Provides demonstrative and relevant examples that serve as a general tutorial Presents a list of algorithm names and computational tools available for basic and clinical researchers
Download or read book Handbook of Research on Data Science for Effective Healthcare Practice and Administration written by Noughabi, Elham Akhond Zadeh and published by IGI Global. This book was released on 2017-07-20 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science has always been an effective way of extracting knowledge and insights from information in various forms. One industry that can utilize the benefits from the advances in data science is the healthcare field. The Handbook of Research on Data Science for Effective Healthcare Practice and Administration is a critical reference source that overviews the state of data analysis as it relates to current practices in the health sciences field. Covering innovative topics such as linear programming, simulation modeling, network theory, and predictive analytics, this publication is recommended for all healthcare professionals, graduate students, engineers, and researchers that are seeking to expand their knowledge of efficient techniques for information analysis in the healthcare professions.
Download or read book Leveraging Data Science for Global Health written by Leo Anthony Celi and published by Springer. This book was released on 2020-09-18 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
Download or read book Global Cardiac Surgery Capacity Development in Low and Middle Income Countries written by Jacques Kpodonu and published by Springer Nature. This book was released on 2021-11-22 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a focused resource on how cardiac surgery capacity can be developed and how it assists in the sustainable development and strengthening of associated health systems. Background is provided on the extent of the problems that are experienced in many nations with suggestions for how suitable frameworks can be developed to improve cardiac healthcare provision. Relevant aspects of governance, financial modelling and disease surveillance are all covered. Guidance is also given on how to found and nurture cardiac surgery curriculum and residency programs. Global Cardiac Surgery Capacity Development in Low and Middle Income Countries provides a practically applicable resource on how to treat cardiac patients with limited resources. It identifies the key challenges and presents strategies on how these can be managed, therefore making it a critical tool for those involved in this field.
Download or read book Leveraging Data in Healthcare written by Rebecca Mendoza Saltiel Busch and published by CRC Press. This book was released on 2017-07-27 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The healthcare industry is in a state of accelerated transition. The proliferation of data and its assimilation, access, use, and security are ever-increasing challenges. Finding ways to operationalize business and clinical data management in the face of government and market mandates is enough to keep most chief officers up at night!Leveraging Dat
Download or read book Demystifying Big Data and Machine Learning for Healthcare written by Prashant Natarajan and published by CRC Press. This book was released on 2017-02-15 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.
Download or read book Global Health Informatics written by Leo Anthony G. Celi and published by MIT Press. This book was released on 2017-04-21 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Key concepts, frameworks, examples, and lessons learned in designing and implementing health information and communication technology systems in the developing world. The widespread usage of mobile phones that bring computational power and data to our fingertips has enabled new models for tracking and battling disease. The developing world in particular has become a proving ground for innovation in eHealth (using communication and technology tools in healthcare) and mHealth (using the affordances of mobile technology in eHealth systems). In this book, experts from a variety of disciplines—among them computer science, medicine, public health, policy, and business—discuss key concepts, frameworks, examples, and lessons learned in designing and implementing digital health systems in the developing world. The contributors consider such topics as global health disparities and quality of care; aligning eHealth strategies with government policy; the role of monitoring and evaluation in improving care; databases, patient registries, and electronic health records; the lifecycle of a digital health system project; software project management; privacy and security; and evaluating health technology systems.
Download or read book Proceedings of the International Conference on Applications of Machine Intelligence and Data Analytics ICAMIDA 2022 written by Sharvari Tamane and published by Springer Nature. This book was released on 2023-05-01 with total page 1027 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an open access book. As on date, huge volumes of data are being generated through sensors, satellites, and simulators. Modern research on data analytics and its applications reveal that several algorithms are being designed and developed to process these datasets, either through the use of sequential and parallel processes. In the current scenario of Industry 4.0, data analytics, artificial intelligence and machine learning are being used to support decisions in space and time. Further, the availability of Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) have enabled to processing of these datasets. Some of the applications of Artificial Intelligence, Machine Learning and Data Analytics are in the domains of Agriculture, Climate Change, Disaster Prediction, Automation in Manufacturing, Intelligent Transportation Systems, Health Care, Retail, Stock Market, Fashion Design, etc. The international conference on Applications of Machine Intelligence and Data Analytics aims to bring together faculty members, researchers, scientists, and industry people on a common platform to exchange ideas, algorithms, knowledge based on processing hardware and their respective application programming interfaces (APIs).
Download or read book Data Science for Healthcare written by Sergio Consoli and published by Springer. This book was released on 2019-02-23 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book.
Download or read book Innovations and Applications of AI IoT and Cognitive Technologies written by Jingyuan Zhao and published by . This book was released on 2021-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data Guided Healthcare Decision Making written by Ramalingam Shanmugam and published by Cambridge University Press. This book was released on 2023-05-31 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: How does data evidence matter in decision-making in healthcare? How do you implement and maintain cost effective healthcare operations? Do decision trees help to sharpen decision making? This book will answer these questions, demystifying the many questions by clearly showing how to analyse data and how to interpret the results – vital skills for anyone who will go on to work in health administration in hospitals, clinics, pharmaceutical or insurance industries. Written by an expert in health and medical informatics, this book introduces readers to the fundamentals of operational decision making by illustrating the ideas and tools to reach optimal healthcare, drawing on numerous healthcare data sets from multiple sources. Aimed at an audience of graduate students and lecturers in Healthcare Administration and Business Administration courses and heavily illustrated throughout, this book includes up-to-date concepts, new methodologies and interpretations using widely available software: Excel, Microsoft Mathematics, MathSolver and JASP.
Download or read book Data Science in the Medical Field written by Seifedine Kadry and published by Elsevier. This book was released on 2024-09-30 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: ata science has the potential to influence and improve fundamental services such as the healthcare sector. This book recognizes this fact by analyzing the potential uses of data science in healthcare. Every human body produces 2 TB of data each day. This information covers brain activity, stress level, heart rate, blood sugar level, and many other things. More sophisticated technology, such as data science, allows clinicians and researchers to handle such a massive volume of data to track the health of patients. The book focuses on the potential and the tools of data science to identify the signs of illness at an extremely early stage. • Shows how improving automated analytical techniques can be used to generate new information from data for healthcare applications• Combines a number of related fields, with a particular emphasis on machine learning, big data analytics, statistics, pattern recognition, computer vision, and semantic web technologies• Provides information on the cutting-edge data science tools required to accelerate innovation for healthcare organizations and patients by reading this book
Download or read book Digital Health written by Homero Rivas and published by Springer Nature. This book was released on 2023-02-13 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This extensively updated second edition describes the increasing use of digital health technologies. It reflects and describes the scenario that healthcare consumers and providers have realized the potential of digital health technologies in light of the recent global healthcare issues, such as the COVID-19 pandemic. Smartphones have become a medical hub through which patients can connect with their medical practitioners and share their vital signs collected through wearables. Concurrently, consumer mobile health apps have shifted from providing generic functionalities to supporting specific diseases such as hypertension, diabetes and cancer. Advancements in digital healthcare have also assisted clinicians, who have relied on artificial intelligence-based applications to support their decision-making. The extent to which digital health has advanced, and is being used by medical professionals and patients, is at the core of this book. Digital Health: From Assumptions to Implementations addresses the emerging trends and enabling tools contributing to technological advances in 21st Century healthcare practice. These areas include generic topics such as mobile health and telemedicine, as well as specific concepts such as social media for health, wearables and quantified-self trends. Also covered are the psychological models leveraged in the design of solutions to persuade us to follow some recommended actions, the design and educational facets of the proposed innovations, as well as ethics, privacy, security and liability aspects influencing its acceptance. Furthermore, sections on economic aspects of the proposed innovations are included, analyzing the potential business models and entrepreneurship opportunities in the domain.
Download or read book Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems written by Om Prakash Jena and published by CRC Press. This book was released on 2022-05-18 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of medical informatics is to improve life expectancy, disease diagnosis and quality of life. Medical devices have revolutionized healthcare and have led to the modern age of machine learning, deep learning and Internet of Medical Things (IoMT) with their proliferation, mobility and agility. This book exposes different dimensions of applications for computational intelligence and explains its use in solving various biomedical and healthcare problems in the real world. This book describes the fundamental concepts of machine learning and deep learning techniques in a healthcare system. The aim of this book is to describe how deep learning methods are used to ensure high-quality data processing, medical image and signal analysis and improved healthcare applications. This book also explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems. Furthermore, it provides the healthcare sector with innovative advances in theory, analytical approaches, numerical simulation, statistical analysis, modelling, advanced deployment, case studies, analytical results, computational structuring and significant progress in the field of machine learning and deep learning in healthcare applications. FEATURES Explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems Provides guidance in developing intelligence-based diagnostic systems, efficient models and cost-effective machines Provides the latest research findings, solutions to the concerning issues and relevant theoretical frameworks in the area of machine learning and deep learning for healthcare systems Describes experiences and findings relating to protocol design, prototyping, experimental evaluation, real testbeds and empirical characterization of security and privacy interoperability issues in healthcare applications Explores and illustrates the current and future impacts of pandemics and mitigates risk in healthcare with advanced analytics This book is intended for students, researchers, professionals and policy makers working in the fields of public health and in the healthcare sector. Scientists and IT specialists will also find this book beneficial for research exposure and new ideas in the field of machine learning and deep learning.
Download or read book Mathematical Modeling and Simulation of Systems written by Volodymyr Kazymyr and published by Springer Nature. This book was released on with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computing and artificial intelligence in digital therapeutics written by Pengwei Hu and published by Frontiers Media SA. This book was released on 2024-01-15 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: