EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lectures on the Poisson Process

Download or read book Lectures on the Poisson Process written by Günter Last and published by Cambridge University Press. This book was released on 2017-10-26 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.

Book Lectures on the Poisson Process

Download or read book Lectures on the Poisson Process written by Günter Last and published by Cambridge University Press. This book was released on 2017-10-26 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Poisson process, a core object in modern probability, enjoys a richer theory than is sometimes appreciated. This volume develops the theory in the setting of a general abstract measure space, establishing basic results and properties as well as certain advanced topics in the stochastic analysis of the Poisson process. Also discussed are applications and related topics in stochastic geometry, including stationary point processes, the Boolean model, the Gilbert graph, stable allocations, and hyperplane processes. Comprehensive, rigorous, and self-contained, this text is ideal for graduate courses or for self-study, with a substantial number of exercises for each chapter. Mathematical prerequisites, mainly a sound knowledge of measure-theoretic probability, are kept in the background, but are reviewed comprehensively in the appendix. The authors are well-known researchers in probability theory; especially stochastic geometry. Their approach is informed both by their research and by their extensive experience in teaching at undergraduate and graduate levels.

Book Lectures on the Poisson Process

Download or read book Lectures on the Poisson Process written by Günter Last and published by Cambridge University Press. This book was released on 2017-10-26 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Poisson process, a core object in modern probability, enjoys a richer theory than is sometimes appreciated. This volume develops the theory in the setting of a general abstract measure space, establishing basic results and properties as well as certain advanced topics in the stochastic analysis of the Poisson process. Also discussed are applications and related topics in stochastic geometry, including stationary point processes, the Boolean model, the Gilbert graph, stable allocations, and hyperplane processes. Comprehensive, rigorous, and self-contained, this text is ideal for graduate courses or for self-study, with a substantial number of exercises for each chapter. Mathematical prerequisites, mainly a sound knowledge of measure-theoretic probability, are kept in the background, but are reviewed comprehensively in the appendix. The authors are well-known researchers in probability theory; especially stochastic geometry. Their approach is informed both by their research and by their extensive experience in teaching at undergraduate and graduate levels.

Book Poisson Processes

    Book Details:
  • Author : J. F. C. Kingman
  • Publisher : Clarendon Press
  • Release : 1992-12-17
  • ISBN : 0191591246
  • Pages : 118 pages

Download or read book Poisson Processes written by J. F. C. Kingman and published by Clarendon Press. This book was released on 1992-12-17 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the theory of random processes there are two that are fundamental, and occur over and over again, often in surprising ways. There is a real sense in which the deepest results are concerned with their interplay. One, the Bachelier Wiener model of Brownian motion, has been the subject of many books. The other, the Poisson process, seems at first sight humbler and less worthy of study in its own right. Nearly every book mentions it, but most hurry past to more general point processes or Markov chains. This comparative neglect is ill judged, and stems from a lack of perception of the real importance of the Poisson process. This distortion partly comes about from a restriction to one dimension, while the theory becomes more natural in more general context. This book attempts to redress the balance. It records Kingman's fascination with the beauty and wide applicability of Poisson processes in one or more dimensions. The mathematical theory is powerful, and a few key results often produce surprising consequences.

Book An Introduction to Stein s Method

Download or read book An Introduction to Stein s Method written by A. D. Barbour and published by World Scientific. This book was released on 2005 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: A common theme in probability theory is the approximation of complicated probability distributions by simpler ones, the central limit theorem being a classical example. Stein's method is a tool which makes this possible in a wide variety of situations. Traditional approaches, for example using Fourier analysis, become awkward to carry through in situations in which dependence plays an important part, whereas Stein's method can often still be applied to great effect. In addition, the method delivers estimates for the error in the approximation, and not just a proof of convergence. Nor is there in principle any restriction on the distribution to be approximated; it can equally well be normal, or Poisson, or that of the whole path of a random process, though the techniques have so far been worked out in much more detail for the classical approximation theorems.This volume of lecture notes provides a detailed introduction to the theory and application of Stein's method, in a form suitable for graduate students who want to acquaint themselves with the method. It includes chapters treating normal, Poisson and compound Poisson approximation, approximation by Poisson processes, and approximation by an arbitrary distribution, written by experts in the different fields. The lectures take the reader from the very basics of Stein's method to the limits of current knowledge.

Book Poisson Point Processes and Their Application to Markov Processes

Download or read book Poisson Point Processes and Their Application to Markov Processes written by Kiyosi Itô and published by Springer. This book was released on 2015-12-24 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Itô, and H. P. McKean, among others. In this book, Itô discussed a case of a general Markov process with state space S and a specified point a ∈ S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m

Book Lectures on the Coupling Method

Download or read book Lectures on the Coupling Method written by Torgny Lindvall and published by Courier Corporation. This book was released on 2012-08-15 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical and easy-to-use reference progresses from simple to advanced topics, covering, among other topics, renewal theory, Markov chains, Poisson approximation, ergodicity, and Strassen's theorem. 1992 edition.

Book Essentials of Stochastic Processes

Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Book Random Processes for Engineers

Download or read book Random Processes for Engineers written by Bruce Hajek and published by Cambridge University Press. This book was released on 2015-03-12 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).

Book Modern Problems of Stochastic Analysis and Statistics

Download or read book Modern Problems of Stochastic Analysis and Statistics written by Vladimir Panov and published by Springer. This book was released on 2017-11-21 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the latest findings in the area of stochastic analysis and statistics. The individual chapters cover a wide range of topics from limit theorems, Markov processes, nonparametric methods, acturial science, population dynamics, and many others. The volume is dedicated to Valentin Konakov, head of the International Laboratory of Stochastic Analysis and its Applications on the occasion of his 70th birthday. Contributions were prepared by the participants of the international conference of the international conference “Modern problems of stochastic analysis and statistics”, held at the Higher School of Economics in Moscow from May 29 - June 2, 2016. It offers a valuable reference resource for researchers and graduate students interested in modern stochastics.

Book Combinatorial Stochastic Processes

Download or read book Combinatorial Stochastic Processes written by Jim Pitman and published by Springer Science & Business Media. This book was released on 2006-05-11 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this text is to bring graduate students specializing in probability theory to current research topics at the interface of combinatorics and stochastic processes. There is particular focus on the theory of random combinatorial structures such as partitions, permutations, trees, forests, and mappings, and connections between the asymptotic theory of enumeration of such structures and the theory of stochastic processes like Brownian motion and Poisson processes.

Book Lectures on Random Voronoi Tessellations

Download or read book Lectures on Random Voronoi Tessellations written by Jesper Moller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tessellations are subdivisions of d-dimensional space into non-overlapping "cells". Voronoi tessellations are produced by first considering a set of points (known as nuclei) in d-space, and then defining cells as the set of points which are closest to each nuclei. A random Voronoi tessellation is produced by supposing that the location of each nuclei is determined by some random process. They provide models for many natural phenomena as diverse as the growth of crystals, the territories of animals, the development of regional market areas, and in subjects such as computational geometry and astrophysics. This volume provides an introduction to random Voronoi tessellations by presenting a survey of the main known results and the directions in which research is proceeding. Throughout the volume, mathematical and rigorous proofs are given making this essentially a self-contained account in which no background knowledge of the subject is assumed.

Book Introduction to Probability

Download or read book Introduction to Probability written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2008-07-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.

Book Discrete Stochastic Processes

Download or read book Discrete Stochastic Processes written by Robert G. Gallager and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Introductory Lectures on Fluctuations of L  vy Processes with Applications

Download or read book Introductory Lectures on Fluctuations of L vy Processes with Applications written by Andreas E. Kyprianou and published by Springer Science & Business Media. This book was released on 2006-12-18 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook forms the basis of a graduate course on the theory and applications of Lévy processes, from the perspective of their path fluctuations. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical transparency and explicitness.

Book Lectures on the Combinatorics of Free Probability

Download or read book Lectures on the Combinatorics of Free Probability written by Alexandru Nica and published by Cambridge University Press. This book was released on 2006-09-07 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2006 book is a self-contained introduction to free probability theory suitable for an introductory graduate level course.