Download or read book Lectures on Minimal Surfaces Volume 1 Introduction Fundamentals Geometry and Basic Boundary Value Problems written by Johannes C. C. Nitsche and published by Cambridge University Press. This book was released on 2011-03-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1989 monograph deals with parametric minimal surfaces in Euclidean space. The author presents a broad survey which extends from the classical beginnings to the current situation whilst highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks. The presentation is complete and is complemented by a bibliography of nearly 1600 references. The careful expository style and emphasis on geometric aspects are extremely valuable. Moreover, in the years leading up to the publication of this book, the theory of minimal surfaces was finding increasing application to other areas of mathematics and the physical sciences ensuring that this account will appeal to non-specialists as well.
Download or read book Lectures on Minimal Surfaces written by Johannes C. C. Nitsche and published by . This book was released on 1989 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Course in Minimal Surfaces written by Tobias Holck Colding and published by American Mathematical Society. This book was released on 2024-01-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.
Download or read book Lectures on Minimal Surfaces Introduction fundamentals geometry and basic boundary value problems written by Johannes C. C. Nitsche and published by . This book was released on 1989 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and translated version of the first five chapters of Vorlesungen ^D"uber Minimalfl^D"achen. It deals with the parametric minimal surface in Euclidean space. The author presents a broad survey that extends from the classical beginnings to the current situation while highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks.
Download or read book Minimal Surfaces I written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.
Download or read book Computer Algebra in Scientific Computing written by Andreas Weber and published by MDPI. This book was released on 2019-11-04 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although scientific computing is very often associated with numeric computations, the use of computer algebra methods in scientific computing has obtained considerable attention in the last two decades. Computer algebra methods are especially suitable for parametric analysis of the key properties of systems arising in scientific computing. The expression-based computational answers generally provided by these methods are very appealing as they directly relate properties to parameters and speed up testing and tuning of mathematical models through all their possible behaviors. This book contains 8 original research articles dealing with a broad range of topics, ranging from algorithms, data structures, and implementation techniques for high-performance sparse multivariate polynomial arithmetic over the integers and rational numbers over methods for certifying the isolated zeros of polynomial systems to computer algebra problems in quantum computing.
Download or read book Minimal Surfaces from a Complex Analytic Viewpoint written by Antonio Alarcón and published by Springer Nature. This book was released on 2021-03-10 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.
Download or read book Minimal Surfaces written by Tobias H. Colding and published by Courant Institute of Mathemetical Sciences. This book was released on 1999 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Surfaces with Constant Mean Curvature written by Katsuei Kenmotsu and published by American Mathematical Soc.. This book was released on 2003 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. There is a rich and well-known theory of minimal surfaces. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. An easy example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. It is now becoming clear that there is a rich theory of surfaces of constant mean curvature. In this book, the author presents numerous examples of constant mean curvature surfaces and techniques for studying them. Many finely rendered figures illustrate the results and allow the reader to visualize and better understand these beautiful objects. The book is suitable for advanced undergraduates, graduate students and research mathematicians interested in analysis and differential geometry.
Download or read book Geometry V written by Robert Osserman and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function.
Download or read book Foliations and the Geometry of 3 Manifolds written by Danny Calegari and published by Clarendon Press. This book was released on 2007-05-17 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in 1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Download or read book Advances in Analysis written by Charles Fefferman and published by Princeton University Press. This book was released on 2014-01-05 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Princeton University's Elias Stein was the first mathematician to see the profound interconnections that tie classical Fourier analysis to several complex variables and representation theory. His fundamental contributions include the Kunze-Stein phenomenon, the construction of new representations, the Stein interpolation theorem, the idea of a restriction theorem for the Fourier transform, and the theory of Hp Spaces in several variables. Through his great discoveries, through books that have set the highest standard for mathematical exposition, and through his influence on his many collaborators and students, Stein has changed mathematics. Drawing inspiration from Stein’s contributions to harmonic analysis and related topics, this volume gathers papers from internationally renowned mathematicians, many of whom have been Stein’s students. The book also includes expository papers on Stein’s work and its influence. The contributors are Jean Bourgain, Luis Caffarelli, Michael Christ, Guy David, Charles Fefferman, Alexandru D. Ionescu, David Jerison, Carlos Kenig, Sergiu Klainerman, Loredana Lanzani, Sanghyuk Lee, Lionel Levine, Akos Magyar, Detlef Müller, Camil Muscalu, Alexander Nagel, D. H. Phong, Malabika Pramanik, Andrew S. Raich, Fulvio Ricci, Keith M. Rogers, Andreas Seeger, Scott Sheffield, Luis Silvestre, Christopher D. Sogge, Jacob Sturm, Terence Tao, Christoph Thiele, Stephen Wainger, and Steven Zelditch.
Download or read book From Riemann to Differential Geometry and Relativity written by Lizhen Ji and published by Springer. This book was released on 2017-10-03 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.
Download or read book Minimal Surfaces II written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal Surfaces I is an introduction to the field of minimal surfaces and a presentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can also be useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory for nonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.
Download or read book Global Analysis of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.
Download or read book The Theory of Quantum Torus Knots Volume III written by Michael Ungs and published by Lulu.com. This book was released on 2010-08-16 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Appendicies A to I that are referenced by Volumes I and II in the theory of quantum torus knots (QTK). A detailed mathematical derivation of space curves is provided that links the diverse fields of superfluids, quantum mechanics, and hydrodynamics.
Download or read book Isoperimetric Inequalities in Riemannian Manifolds written by Manuel Ritoré and published by Springer Nature. This book was released on 2023-10-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a coherent introduction to isoperimetric inequalities in Riemannian manifolds, featuring many of the results obtained during the last 25 years and discussing different techniques in the area. Written in a clear and appealing style, the book includes sufficient introductory material, making it also accessible to graduate students. It will be of interest to researchers working on geometric inequalities either from a geometric or analytic point of view, but also to those interested in applying the described techniques to their field.