Download or read book Lectures on the Many body Problem written by Eduardo Renato Caianiello and published by . This book was released on 1964 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lectures on The Many Body Problems V1 written by E.R. Caianiello and published by Elsevier. This book was released on 2012-12-02 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lectures on Field Theory and the Many-Body Problem is a 23-chapter lecture series on the developments in the understanding of the structure and axiomatics of Field Theory, which has proved to be a most useful tool in the study of many-body problems. This book starts with a brief introduction to the TCP theorem, followed by a discussion on the gauge properties of the quantum electrodynamical quantities. The subsequent chapters describe the features and applications of unstable and composite particles to quantum field theory. These topics are followed by significant chapters on other aspects of the field theory, including the configuration space method, Wightman functions, vacuum expectation value, Pais doublets, time reversal in nuclear forces, and symmetry operations in quantum mechanics. This text also covers the ground state theory of many-particle systems and the many body problems at non-zero temperature. The last chapters explore the behavior of a Boson system, the polaron model, and the mathematical aspects of the Hilbert spaces. Physicists and researchers in allied sciences will find this book of great value.
Download or read book Many Body Quantum Theory in Condensed Matter Physics written by Henrik Bruus and published by Oxford University Press. This book was released on 2004-09-02 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Download or read book Introduction to Many Body Physics written by Piers Coleman and published by Cambridge University Press. This book was released on 2015-11-26 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Download or read book Lectures on The Many Body Problems V2 written by E.R. Caianiello and published by Elsevier. This book was released on 2012-12-02 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lectures on the Many-Body Problem is a compilation of papers delivered at the Fifth International School of Physics, held at Ravello, Italy in April 1963. The book is devoted to the techniques of many-body theory, which are used in finding solutions to difficult problems encountered in solid-state physics. The text discusses such topics as the discontinuities in the drift velocity of ions in liquid helium; density fluctuation excitations in many-particle systems; tunneling from a many-particle point of view; the mathematics of second quantization for systems of fermions; and correlation functions and macroscopic equations. Theoretical physicists will find the monograph invaluable.
Download or read book Stochastic Variational Approach to Quantum Mechanical Few Body Problems written by Yasuyuki Suzuki and published by Springer Science & Business Media. This book was released on 2003-07-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quantum-mechanical few-body problem is of fundamental importance for all branches of microphysics and it has substantially broadened with the advent of modern computers. This book gives a simple, unified recipe to obtain precise solutions to virtually any few-body bound-state problem and presents its application to various problems in atomic, molecular, nuclear, subnuclear and solid state physics. The main ingredients of the methodology are a wave-function expansion in terms of correlated Gaussians and an optimization of the variational trial function by stochastic sampling. The book is written for physicists and, especially, for graduate students interested in quantum few-body physics.
Download or read book Quantum Field Theory of Many Body Systems written by Xiao-Gang Wen and published by OUP Oxford. This book was released on 2004-06-04 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.
Download or read book The Quantum Mechanical Few Body Problem written by W. Glöckle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few-body systems are both technically relatively simple and physically non trivial enough to test theories quantitatively. For instance the He-atom played historically an important role in verifying predictions of QED. A similar role is contributed nowadays to the three-nucleon system as a testing ground far nuclear dynamics and maybe in the near future to few-quark systems. They are also often the basic building blocks for many-body systems like to some extent nuclei, where the real many-body aspect is not the dominant feature. The presentation of the subject given here is based on lectures held at var ious places in the last ten years. The selection of the topics is certainly subjec tive and influenced by my own research interests. The content of the book is simply organized according to the increasing nu mb er of particles treated. Be cause of its conceptual simplicity single particle motion is very suitable for in troducing the basic elements of scattering theory. Using these elements the two-body system is treated for the specific case of two nucleons, which is of great importance in the study of the nuclear interaction. Great space is devoted to the less trivial few-body system consisting of three particles. Again physical examples are taken solely from nuclear physics. Finally the four particle system is discussed so as to familiarize the reader with the techniques required for the formulations of n-bodies in general.
Download or read book An Advanced Course in Computational Nuclear Physics written by Morten Hjorth-Jensen and published by Springer. This book was released on 2017-05-09 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.
Download or read book Tensor Network Contractions written by Shi-Ju Ran and published by Springer Nature. This book was released on 2020-01-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.
Download or read book A Course on Many body Theory Applied to Solid state Physics written by Charles Paul Enz and published by World Scientific. This book was released on 1992 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aim of this book is to give a self-contained and representative cross section through present-day research in solid-state physics. This covers metallic and mesoscopic transport, localization by disorder and superconductivity, including questions related to high-temperature superconductors and to heavy fermion systems. An important part of the book is devoted to itinerant-electron magnetism, discussing paramagnons, strong correlation, magnetization fluctuations and spin density waves. All the formal tools used in these chapters are developed in the first part of the book which contains a thorough discussion of second quantization and of perturbation theory for an arbitrary complex time path and also describes the functional approach to Feynman diagrams including general ward identities. Each chapter contains an extensive list of the relevant literature and a series of problems with detailed solutions which complement the main text. The book is meant both as a course and a research tool.
Download or read book Quantum Scaling in Many Body Systems written by Mucio Continentino and published by Cambridge University Press. This book was released on 2017-04-17 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on experimental results, this updated edition approaches the problem of quantum phase transitions from a new and unifying perspective.
Download or read book Renormalization Group and Effective Field Theory Approaches to Many Body Systems written by Achim Schwenk and published by Springer. This book was released on 2012-06-25 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been many recent and important developments based on effective field theory and the renormalization group in atomic, condensed matter, nuclear and high-energy physics. These powerful and versatile methods provide novel approaches to study complex and strongly interacting many-body systems in a controlled manner. The six extensive lectures gathered in this volume combine selected introductory and interdisciplinary presentations focused on recent applications of effective field theory and the renormalization group to many-body problems in such diverse fields as BEC, DFT, extreme matter, Fermi-liquid theory and gauge theories. Primarily aimed at graduate students and junior researchers, they offer an opportunity to explore fundamental physics across subfield boundaries at an early stage in their careers.
Download or read book Condensed Matter Field Theory written by Alexander Altland and published by Cambridge University Press. This book was released on 2010-03-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Download or read book A Mathematical Introduction to Electronic Structure Theory written by Lin Lin and published by SIAM. This book was released on 2019-06-05 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.
Download or read book Lectures On Computation written by Richard P. Feynman and published by Addison-Wesley Longman. This book was released on 1996-09-08 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b
Download or read book Mathematical Horizons for Quantum Physics written by Huzihiro Araki and published by World Scientific. This book was released on 2010 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of the molecular alignment or orientation by laser pulses / Arne Keller -- Quantum computing and devices : A short introduction / Zhigang Zhang, Viswanath Ramakrishna and Goong Chen -- Dynamics of mixed classical-quantum systems, geometric quantization and coherent states / Hans-Rudolf Jauslin and Dominique Sugny -- Quantum memories as open systems / Robert Alicki -- Two mathematical problems in quantum information theory / Alexander S. Holevo -- Dissipatively induced bipartite entanglement / Fabio Benatti -- Scattering in nonrelativistic quantum field theory / Jan Derezinski -- Mathematical theory of atoms and molecules / Volker Bach