EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lectures on Lie Groups and Lie Algebras

Download or read book Lectures on Lie Groups and Lie Algebras written by Roger William Carter and published by . This book was released on 1995-08-17 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: An excellent introduction to the theory of Lie groups and Lie algebras.

Book Lectures on Lie Groups

Download or read book Lectures on Lie Groups written by J. F. Adams and published by University of Chicago Press. This book was released on 1982 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: "[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky

Book Lie Algebras and Lie Groups

Download or read book Lie Algebras and Lie Groups written by Jean-Pierre Serre and published by Springer. This book was released on 2009-02-07 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I.I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups. of time prevented me from including the more precise theory of Lack semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a last Chapter, the typical case ofal, . This part has been written with the help of F. Raggi and J. Tate. I want to thank them, and also Sue Golan, who did the typing for both parts. Jean-Pierre Serre Harvard, Fall 1964 Chapter I. Lie Algebras: Definition and Examples Let Ie be a commutativering with unit element, and let A be a k-module, then A is said to be a Ie-algebra if there is given a k-bilinear map A x A~ A (i.e., a k-homomorphism A0" A -+ A). As usual we may define left, right and two-sided ideals and therefore quo tients. Definition 1. A Lie algebra over Ie isan algebrawith the following properties: 1). The map A0i A -+ A admits a factorization A ®i A -+ A2A -+ A i.e., ifwe denote the imageof(x, y) under this map by [x, y) then the condition becomes for all x e k. [x, x)=0 2). (lx, II], z]+ny, z), x) + ([z, xl, til = 0 (Jacobi's identity) The condition 1) implies [x,1/]=-[1/, x).

Book An Introduction to Lie Groups and Lie Algebras

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Book Lectures on Exceptional Lie Groups

Download or read book Lectures on Exceptional Lie Groups written by J. F. Adams and published by University of Chicago Press. This book was released on 1996-12 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: J. Frank Adams was internationally known and respected as one of the great algebraic topologists. Adams had long been fascinated with exceptional Lie groups, about which he published several papers, and he gave a series of lectures on the topic. The author's detailed lecture notes have enabled volume editors Zafer Mahmud and Mamoru Mimura to preserve the substance and character of Adams's work. Because Lie groups form a staple of most mathematics graduate students' diets, this work on exceptional Lie groups should appeal to many of them, as well as to researchers of algebraic geometry and topology. J. Frank Adams was Lowndean professor of astronomy and geometry at the University of Cambridge. The University of Chicago Press published his Lectures on Lie Groups and has reprinted his Stable Homotopy and Generalized Homology. Chicago Lectures in Mathematics Series

Book Representation Theory

    Book Details:
  • Author : William Fulton
  • Publisher : Springer Science & Business Media
  • Release : 1991
  • ISBN : 9780387974958
  • Pages : 616 pages

Download or read book Representation Theory written by William Fulton and published by Springer Science & Business Media. This book was released on 1991 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.

Book Lectures On Lie Groups  Second Edition

Download or read book Lectures On Lie Groups Second Edition written by Wu-yi Hsiang and published by World Scientific. This book was released on 2017-04-07 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive 'tour of revisiting' the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartan's theory on Lie groups and symmetric spaces.With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books.We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius-Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1-4). It is a wonderful reality of the Lie theory that the clear-cut orbital geometry of the adjoint action of compact Lie groups on themselves (i.e. the geometry of conjugacy classes) is not only the key to understand the compact theory, but it actually already constitutes the central core of the entire semi-simple theory, as well as that of the symmetric spaces (cf. Lectures 5-9). This is the main reason that makes the succeeding generalizations to the semi-simple Lie theory, and then further to the Cartan theory on Lie groups and symmetric spaces, conceptually quite natural, and technically rather straightforward.

Book Lectures on Lie Groups

Download or read book Lectures on Lie Groups written by Wu Yi Hsiang and published by World Scientific. This book was released on 2000 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of . Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry.

Book Lie Groups  Lie Algebras  and Representations

Download or read book Lie Groups Lie Algebras and Representations written by Brian C. Hall and published by Springer Science & Business Media. This book was released on 2003-08-07 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.

Book Applications of Lie Groups to Differential Equations

Download or read book Applications of Lie Groups to Differential Equations written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Book Lie Groups and Geometric Aspects of Isometric Actions

Download or read book Lie Groups and Geometric Aspects of Isometric Actions written by Marcos M. Alexandrino and published by Springer. This book was released on 2015-05-22 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides quick access to the theory of Lie groups and isometric actions on smooth manifolds, using a concise geometric approach. After a gentle introduction to the subject, some of its recent applications to active research areas are explored, keeping a constant connection with the basic material. The topics discussed include polar actions, singular Riemannian foliations, cohomogeneity one actions, and positively curved manifolds with many symmetries. This book stems from the experience gathered by the authors in several lectures along the years and was designed to be as self-contained as possible. It is intended for advanced undergraduates, graduate students and young researchers in geometry and can be used for a one-semester course or independent study.

Book p Adic Lie Groups

    Book Details:
  • Author : Peter Schneider
  • Publisher : Springer Science & Business Media
  • Release : 2011-06-11
  • ISBN : 364221147X
  • Pages : 259 pages

Download or read book p Adic Lie Groups written by Peter Schneider and published by Springer Science & Business Media. This book was released on 2011-06-11 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.

Book Lie Algebras of Finite and Affine Type

Download or read book Lie Algebras of Finite and Affine Type written by Roger William Carter and published by Cambridge University Press. This book was released on 2005-10-27 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough but relaxed mathematical treatment of Lie algebras.

Book Groups and Manifolds

    Book Details:
  • Author : Pietro Giuseppe Fré
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2017-12-18
  • ISBN : 3110551209
  • Pages : 498 pages

Download or read book Groups and Manifolds written by Pietro Giuseppe Fré and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-12-18 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Groups and Manifolds is an introductory, yet a complete self-contained course on mathematics of symmetry: group theory and differential geometry of symmetric spaces, with a variety of examples for physicists, touching briefly also on super-symmetric field theories. The core of the course is focused on the construction of simple Lie algebras, emphasizing the double interpretation of the ADE classification as applied to finite rotation groups and to simply laced simple Lie algebras. Unique features of this book are the full-fledged treatment of the exceptional Lie algebras and a rich collection of MATHEMATICA Notebooks implementing various group theoretical constructions.

Book Lectures on Algebraic Quantum Groups

Download or read book Lectures on Algebraic Quantum Groups written by Ken Brown and published by Birkhäuser. This book was released on 2012-12-06 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.

Book Foundations of Differentiable Manifolds and Lie Groups

Download or read book Foundations of Differentiable Manifolds and Lie Groups written by Frank W. Warner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Book Lie Groups  Lie Algebras  and Representations

Download or read book Lie Groups Lie Algebras and Representations written by Brian Hall and published by Springer. This book was released on 2015-05-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette