EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lectures on Clifford  Geometric  Algebras and Applications

Download or read book Lectures on Clifford Geometric Algebras and Applications written by Rafal Ablamowicz and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of Clifford (geometric) algebras offers a unified algebraic framework for the direct expression of the geometric concepts in algebra, geometry, and physics. This bird's-eye view of the discipline is presented by six of the world's leading experts in the field; it features an introductory chapter on Clifford algebras, followed by extensive explorations of their applications to physics, computer science, and differential geometry. The book is ideal for graduate students in mathematics, physics, and computer science; it is appropriate both for newcomers who have little prior knowledge of the field and professionals who wish to keep abreast of the latest applications.

Book Clifford  Geometric  Algebras

    Book Details:
  • Author : William E. Baylis
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461241049
  • Pages : 522 pages

Download or read book Clifford Geometric Algebras written by William E. Baylis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.

Book Clifford  geometric  Algebras with Applications to Physics  Mathematics  and Engineering

Download or read book Clifford geometric Algebras with Applications to Physics Mathematics and Engineering written by William Eric Baylis and published by Boston : Birkhäuser. This book was released on 1996 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a comprehensive approach to the theoretical, applied and symbolic computational aspects of the subject. Excellent for self-study, leading experts in the field have written on the of topics mentioned above, using an easy approach with efficient geometric language for non-specialists.

Book Clifford  Geometric  Algebras

    Book Details:
  • Author : William E Baylis
  • Publisher :
  • Release : 1996-08-01
  • ISBN : 9781461241058
  • Pages : 540 pages

Download or read book Clifford Geometric Algebras written by William E Baylis and published by . This book was released on 1996-08-01 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Clifford  Geometric  Algebras

Download or read book Clifford Geometric Algebras written by William Baylis and published by Birkhäuser. This book was released on 1999-04-23 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.

Book Geometric Computing with Clifford Algebras

Download or read book Geometric Computing with Clifford Algebras written by Gerald Sommer and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.

Book Clifford Algebras and Spinors

Download or read book Clifford Algebras and Spinors written by Pertti Lounesto and published by Cambridge University Press. This book was released on 2001-05-03 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.

Book Clifford Algebras and Their Applications in Mathematical Physics

Download or read book Clifford Algebras and Their Applications in Mathematical Physics written by J.S.R. Chisholm and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject.

Book Clifford Algebras and Their Application in Mathematical Physics

Download or read book Clifford Algebras and Their Application in Mathematical Physics written by Volker Dietrich and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.

Book An Introduction to Clifford Algebras and Spinors

Download or read book An Introduction to Clifford Algebras and Spinors written by Jayme Vaz Jr. and published by Oxford University Press. This book was released on 2016 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.

Book Clifford Analysis and Its Applications

Download or read book Clifford Analysis and Its Applications written by F. Brackx and published by Springer Science & Business Media. This book was released on 2001-07-31 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.

Book Spin Geometry  PMS 38   Volume 38

Download or read book Spin Geometry PMS 38 Volume 38 written by H. Blaine Lawson and published by Princeton University Press. This book was released on 2016-06-02 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic and comprehensive presentation of the concepts of a spin manifold, spinor fields, Dirac operators, and A-genera, which, over the last two decades, have come to play a significant role in many areas of modern mathematics. Since the deeper applications of these ideas require various general forms of the Atiyah-Singer Index Theorem, the theorems and their proofs, together with all prerequisite material, are examined here in detail. The exposition is richly embroidered with examples and applications to a wide spectrum of problems in differential geometry, topology, and mathematical physics. The authors consistently use Clifford algebras and their representations in this exposition. Clifford multiplication and Dirac operator identities are even used in place of the standard tensor calculus. This unique approach unifies all the standard elliptic operators in geometry and brings fresh insights into curvature calculations. The fundamental relationships of Clifford modules to such topics as the theory of Lie groups, K-theory, KR-theory, and Bott Periodicity also receive careful consideration. A special feature of this book is the development of the theory of Cl-linear elliptic operators and the associated index theorem, which connects certain subtle spin-corbordism invariants to classical questions in geometry and has led to some of the most profound relations known between the curvature and topology of manifolds.

Book Exploring physics with Geometric Algebra

Download or read book Exploring physics with Geometric Algebra written by Peeter Joot and published by Peeter Joot. This book was released on with total page 1106 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an exploratory collection of notes containing worked examples of a number of applications of Geometric Algebra (GA), also known as Clifford Algebra. This writing is focused on undergraduate level physics concepts, with a target audience of somebody with an undergraduate engineering background (i.e. me at the time of writing.) These notes are more journal than book. You'll find lots of duplication, since I reworked some topics from scratch a number of times. In many places I was attempting to learn both the basic physics concepts as well as playing with how to express many of those concepts using GA formalisms. The page count proves that I did a very poor job of weeding out all the duplication. These notes are (dis)organized into the following chapters * Basics and Geometry. This chapter covers a hodge-podge collection of topics, including GA forms for traditional vector identities, Quaterions, Cauchy equations, Legendre polynomials, wedge product representation of a plane, bivector and trivector geometry, torque and more. A couple attempts at producing an introduction to GA concepts are included (none of which I was ever happy with.) * Projection. Here the concept of reciprocal frame vectors, using GA and traditional matrix formalisms is developed. Projection, rejection and Moore-Penrose (generalized inverse) operations are discussed. * Rotation. GA Rotors, Euler angles, spherical coordinates, blade exponentials, rotation generators, and infinitesimal rotations are all examined from a GA point of view. * Calculus. Here GA equivalents for a number of vector calculus relations are developed, spherical and hyperspherical volume parameterizations are derived, some questions about the structure of divergence and curl are examined, and tangent planes and normals in 3 and 4 dimensions are examined. Wrapping up this chapter is a complete GA formulation of the general Stokes theorem for curvilinear coordinates in Euclidean or non-Euclidean spaces is developed. * General Physics. This chapter introduces a bivector form of angular momentum (instead of a cross product), examines the components of radial velocity and acceleration, kinetic energy, symplectic structure, Newton's method, and a center of mass problem for a toroidal segment. * Relativity. This is a fairly incoherent chapter, including an attempt to develop the Lorentz transformation by requiring wave equation invariance, Lorentz transformation of the four-vector (STA) gradient, and a look at the relativistic doppler equation. * Electrodynamics. The GA formulation of Maxwell's equation (singular in GA) is developed here. Various basic topics of electrodynamics are examined using the GA toolbox, including the Biot-Savart law, the covariant form for Maxwell's equation (Space Time Algebra, or STA), four vectors and potentials, gauge invariance, TEM waves, and some Lienard-Wiechert problems. * Lorentz Force. Here the GA form of the Lorentz force equation and its relation to the usual vectorial representation is explored. This includes some application of boosts to the force equation to examine how it transforms under observe dependent conditions. * Electrodynamic stress energy. This chapter explores concepts of electrodynamic energy and momentum density and the GA representation of the Poynting vector and the stress-energy tensors. * Quantum Mechanics. This chapter includes a look at the Dirac Lagrangian, and how this can be cast into GA form. Properties of the Pauli and Dirac bases are explored, and how various matrix operations map onto their GA equivalents. A bivector form for the angular momentum operator is examined. A multivector form for the first few spherical harmonic eigenfunctions is developed. A multivector factorization of the three and four dimensional Laplacian and the angular momentum operators are derived. * Fourier treatments. Solutions to various PDE equations are attempted using Fourier series and transforms. Much of this chapter was exploring Fourier solutions to the GA form of Maxwell's equation, but a few other non-geometric algebra Fourier problems were also tackled.

Book New Foundations for Classical Mechanics

Download or read book New Foundations for Classical Mechanics written by D. Hestenes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applica tions matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics.

Book Quaternions  Clifford Algebras and Relativistic Physics

Download or read book Quaternions Clifford Algebras and Relativistic Physics written by Patrick R. Girard and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.

Book Geometric Algebra for Computer Science

Download or read book Geometric Algebra for Computer Science written by Leo Dorst and published by Elsevier. This book was released on 2010-07-26 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

Book Geometrical Vectors

    Book Details:
  • Author : Gabriel Weinreich
  • Publisher : University of Chicago Press
  • Release : 1998-07-06
  • ISBN : 9780226890487
  • Pages : 132 pages

Download or read book Geometrical Vectors written by Gabriel Weinreich and published by University of Chicago Press. This book was released on 1998-07-06 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every advanced undergraduate and graduate student of physics must master the concepts of vectors and vector analysis. Yet most books cover this topic by merely repeating the introductory-level treatment based on a limited algebraic or analytic view of the subject. Geometrical Vectors introduces a more sophisticated approach, which not only brings together many loose ends of the traditional treatment, but also leads directly into the practical use of vectors in general curvilinear coordinates by carefully separating those relationships which are topologically invariant from those which are not. Based on the essentially geometric nature of the subject, this approach builds consistently on students' prior knowledge and geometrical intuition. Written in an informal and personal style, Geometrical Vectors provides a handy guide for any student of vector analysis. Clear, carefully constructed line drawings illustrate key points in the text, and problem sets as well as physical examples are provided.