Download or read book Lectures on Cauchy s Problem in Linear Partial Differential Equations written by Jacques Hadamard and published by . This book was released on 1923 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Jacques Hadamard written by Vladimir Gilelevič Mazʹâ and published by American Mathematical Soc.. This book was released on 1999 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a fascinating story of the long life and great accomplishments of Jacques Hadamard (1865-1963), who was once called 'the living legend of mathematics'. As one of the last universal mathematicians, Hadamard's contributions to mathematics are landmarks in various fields. His life is linked with world history of the 20th century in a dramatic way. This work provides an inspiring view of the development of various branches of mathematics during the 19th and 20th centuries.Part I of the book portrays Hadamard's family, childhood and student years, scientific triumphs, and his personal life and trials during the first two world wars. The story is told of his involvement in the Dreyfus affair and his subsequent fight for justice and human rights. Also recounted are Hadamard's worldwide travels, his famous seminar, his passion for botany, his home orchestra, where he played the violin with Einstein, and his interest in the psychology of mathematical creativity. Hadamard's life is described in a readable and inviting way.The authors humorously weave throughout the text his jokes and the myths about him. They also movingly recount the tragic side of his life. Stories about his relatives and friends, and old letters and documents create an authentic and colorful picture. The book contains over 300 photographs and illustrations. Part II of the book includes a lucid overview of Hadamard's enormous work, spanning over six decades. The authors do an excellent job of connecting his results to current concerns.While the book is accessible to beginners, it also provides rich information of interest to experts. Vladimir Mazya and Tatyana Shaposhnikova were the 2003 laureates of the Insitut de France's Prix Alfred Verdaguer. One or more prizes are awarded each year, based on suggestions from the Academie francaise, the Academie de sciences, and the Academie de beaux-arts, for the most remarkable work in the arts, literature, and the sciences. In 2003, the award for excellence was granted in recognition of Mazya and Shaposhnikova's book, ""Jacques Hadamard, A Universal Mathematician"", which is both an historical book about a great citizen and a scientific book about a great mathematician.
Download or read book The Cauchy Problem written by Hector O. Fattorini and published by Cambridge University Press. This book was released on 1983 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with the Cauchy or initial value problem for linear differential equations. It treats in detail some of the applications of linear space methods to partial differential equations, especially the equations of mathematical physics such as the Maxwell, Schrödinger and Dirac equations. Background material presented in the first chapter makes the book accessible to mathematicians and physicists who are not specialists in this area as well as to graduate students.
Download or read book Partial Differential Equations and Inverse Problems written by Carlos Conca and published by American Mathematical Soc.. This book was released on 2004 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume is a collection of articles from the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems held in Santiago (Chile). Interactions among partial differential equations, nonlinear analysis, and inverse problems have produced remarkable developments over the last couple of decades. This volume contains survey articles reflecting the work of leading experts who presented minicourses at the event. Contributors include J. Busca, Y. Capdeboscq, M.S. Vogelius, F. A. Grunbaum, L. F. Matusevich, M. de Hoop, and P. Kuchment. The volume is suitable for graduate students and researchers interested in partial differential equations and their applications in nonlinear analysis and inverse problems.
Download or read book Analysis of the Robin Dirichlet iterative procedure for solving the Cauchy problem for elliptic equations with extension to unbounded domains written by Pauline Achieng and published by Linköping University Electronic Press. This book was released on 2020-10-26 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis we study the Cauchy problem for elliptic equations. It arises in many areas of application in science and engineering as a problem of reconstruction of solutions to elliptic equations in a domain from boundary measurements taken on a part of the boundary of this domain. The Cauchy problem for elliptic equations is known to be ill-posed. We use an iterative regularization method based on alternatively solving a sequence of well-posed mixed boundary value problems for the same elliptic equation. This method, based on iterations between Dirichlet-Neumann and Neumann-Dirichlet mixed boundary value problems was first proposed by Kozlov and Maz’ya [13] for Laplace equation and Lame’ system but not Helmholtz-type equations. As a result different modifications of this original regularization method have been proposed in literature. We consider the Robin-Dirichlet iterative method proposed by Mpinganzima et.al [3] for the Cauchy problem for the Helmholtz equation in bounded domains. We demonstrate that the Robin-Dirichlet iterative procedure is convergent for second order elliptic equations with variable coefficients provided the parameter in the Robin condition is appropriately chosen. We further investigate the convergence of the Robin-Dirichlet iterative procedure for the Cauchy problem for the Helmholtz equation in a an unbounded domain. We derive and analyse the necessary conditions needed for the convergence of the procedure. In the numerical experiments, the precise behaviour of the procedure for different values of k2 in the Helmholtz equation is investigated and the results show that the speed of convergence depends on the choice of the Robin parameters, ?0 and ?1. In the unbounded domain case, the numerical experiments demonstrate that the procedure is convergent provided that the domain is truncated appropriately and the Robin parameters, ?0 and ?1 are also chosen appropriately.
Download or read book Partial Differential Equations written by Emmanuele DiBenedetto and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is meant to be a self-contained, elementary introduction to Partial Differential Equations, assuming only advanced differential calculus and some basic LP theory. Although the basic equations treated in this book, given its scope, are linear, we have made an attempt to approach them from a nonlinear perspective. Chapter I is focused on the Cauchy-Kowaleski theorem. We discuss the notion of characteristic surfaces and use it to classify partial differential equations. The discussion grows out of equations of second order in two variables to equations of second order in N variables to p.d.e.'s of any order in N variables. In Chapters II and III we study the Laplace equation and connected elliptic theory. The existence of solutions for the Dirichlet problem is proven by the Perron method. This method clarifies the structure ofthe sub(super)harmonic functions and is closely related to the modern notion of viscosity solution. The elliptic theory is complemented by the Harnack and Liouville theorems, the simplest version of Schauder's estimates and basic LP -potential estimates. Then, in Chapter III, the Dirichlet and Neumann problems, as well as eigenvalue problems for the Laplacian, are cast in terms of integral equations. This requires some basic facts concerning double layer potentials and the notion of compact subsets of LP, which we present.
Download or read book Eigenfunctions of the Laplacian on a Riemannian Manifold written by Steve Zelditch and published by American Mathematical Soc.. This book was released on 2017-12-12 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.
Download or read book Science Progress in the Twentieth Century written by and published by . This book was released on 1924 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Science Progress written by and published by . This book was released on 1924 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review journal of current scientific advance.
Download or read book Partial Differential Equations written by Serge_ L_vovich Sobolev R. A. Aleksandrjan and published by American Mathematical Soc.. This book was released on 1976-12-31 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Change and Variations written by Jeremy Gray and published by Springer Nature. This book was released on 2021-06-03 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a history of differential equations, both ordinary and partial, as well as the calculus of variations, from the origins of the subjects to around 1900. Topics treated include the wave equation in the hands of d’Alembert and Euler; Fourier’s solutions to the heat equation and the contribution of Kovalevskaya; the work of Euler, Gauss, Kummer, Riemann, and Poincaré on the hypergeometric equation; Green’s functions, the Dirichlet principle, and Schwarz’s solution of the Dirichlet problem; minimal surfaces; the telegraphists’ equation and Thomson’s successful design of the trans-Atlantic cable; Riemann’s paper on shock waves; the geometrical interpretation of mechanics; and aspects of the study of the calculus of variations from the problems of the catenary and the brachistochrone to attempts at a rigorous theory by Weierstrass, Kneser, and Hilbert. Three final chapters look at how the theory of partial differential equations stood around 1900, as they were treated by Picard and Hadamard. There are also extensive, new translations of original papers by Cauchy, Riemann, Schwarz, Darboux, and Picard. The first book to cover the history of differential equations and the calculus of variations in such breadth and detail, it will appeal to anyone with an interest in the field. Beyond secondary school mathematics and physics, a course in mathematical analysis is the only prerequisite to fully appreciate its contents. Based on a course for third-year university students, the book contains numerous historical and mathematical exercises, offers extensive advice to the student on how to write essays, and can easily be used in whole or in part as a course in the history of mathematics. Several appendices help make the book self-contained and suitable for self-study.
Download or read book Non linear inverse geothermal problems written by Dennis Wokiyi and published by Linköping University Electronic Press. This book was released on 2017-11-16 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: The inverse geothermal problem consist of estimating the temperature distribution below the earth’s surface using temperature and heat-flux measurements on the earth’s surface. The problem is important since temperature governs a variety of the geological processes including formation of magmas, minerals, fosil fuels and also deformation of rocks. Mathematical this problem is formulated as a Cauchy problem for an non-linear elliptic equation and since the thermal properties of the rocks depend strongly on the temperature, the problem is non-linear. This problem is ill-posed in the sense that it does not satisfy atleast one of Hadamard’s definition of well-posedness. We formulated the problem as an ill-posed non-linear operator equation which is defined in terms of solving a well-posed boundary problem. We demonstrate existence of a unique solution to this well-posed problem and give stability estimates in appropriate function spaces. We show that the operator equation is well-defined in appropriate function spaces. Since the problem is ill-posed, regularization is needed to stabilize computations. We demostrate that Tikhonov regularization can be implemented efficiently for solving the operator equation. The algorithm is based on having a code for solving a well- posed problem related to the operator equation. In this study we demostrate that the algorithm works efficiently for 2D calculations but can also be modified to work for 3D calculations.
Download or read book Changing Images in Mathematics written by Umberto Bottazini and published by Routledge. This book was released on 2013-06-17 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on some of the major developments in the history of contemporary (19th and 20th century) mathematics as seen in the broader context of the development of science and culture. Avoiding technicalities, it displays the breadth of contrasting images of mathematics favoured by different countries, schools and historical movements, showing how the conception and practice of mathematics changed over time depending on the cultural and national context. Thus it provides an original perspective for embracing the richness and variety inherent in the development of mathematics. Attention is paid to the interaction of mathematics with themes whose proper treatment have been neglected by the traditional historiography of the discipline, such as the relationship between mathematics, statistics and medicine.
Download or read book A Course in Mathematical Analysis Volume 3 written by Edouard Goursat and published by Courier Corporation. This book was released on 2013-04-04 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic three-volume study. Volume 1 covers applications to geometry, expansion in series, definite integrals, and derivatives and differentials. Volume 2 explores functions of a complex variable and differential equations. Volume 3 surveys variations of solutions and partial differential equations of the second order and integral equations and calculus of variations.
Download or read book Joseph Bertrand written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2024-02-04 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Who is Joseph Bertrand French mathematician Joseph Louis Francois Bertrand was known for his contributions to the fields of number theory, differential geometry, probability theory, economics, and thermodynamics. How you will benefit (I) Insights about the following: Chapter 1: Joseph Bertrand Chapter 2: Augustin-Louis Cauchy Chapter 3: Évariste Galois Chapter 4: Siméon Denis Poisson Chapter 5: André Sainte-Laguë Chapter 6: Jacques Hadamard Chapter 7: Camille Jordan Chapter 8: Émile Borel Chapter 9: Paul Lévy (mathematician) Chapter 10: Jean-Victor Poncelet Chapter 11: Louis Bachelier Chapter 12: Jean Gaston Darboux Chapter 13: Jacques Charles François Sturm Chapter 14: Georges Henri Halphen Chapter 15: Sylvestre-François Lacroix Chapter 16: Charles Hermite Chapter 17: Joseph Fourier Chapter 18: Charles Paul Narcisse Moreau Chapter 19: Robert de Montessus de Ballore Chapter 20: Jacques Neveu Chapter 21: Daniel Dugu Who this book is for Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information about Joseph Bertrand.
Download or read book Problems in Modern Mathematics written by Stanislaw M. Ulam and published by Courier Corporation. This book was released on 2004-06-23 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ulam, famous for his solution to the difficulties of initiating fusion in the hydrogen bomb, devised the well-known Monte-Carlo method. Here he presents challenges in the areas of set theory, algebra, metric and topological spaces, and topological groups. Issues in analysis, physical systems, and the use of computers as a heuristic aid are also addressed.
Download or read book Some Applications of Functional Analysis in Mathematical Physics written by S. L. Sobolev and published by American Mathematical Soc.. This book was released on 2008-04-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special problems of functional analysis Variational methods in mathematical physics The theory of hyperbolic partial differential equations Comments Appendix: Methode nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales Comments on the appendix Bibliography Index