EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Learning to Rank for Information Retrieval and Natural Language Processing  Second Edition

Download or read book Learning to Rank for Information Retrieval and Natural Language Processing Second Edition written by Hang Li and published by Springer Nature. This book was released on 2022-05-31 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank is useful for many applications in information retrieval, natural language processing, and data mining. Intensive studies have been conducted on its problems recently, and significant progress has been made. This lecture gives an introduction to the area including the fundamental problems, major approaches, theories, applications, and future work. The author begins by showing that various ranking problems in information retrieval and natural language processing can be formalized as two basic ranking tasks, namely ranking creation (or simply ranking) and ranking aggregation. In ranking creation, given a request, one wants to generate a ranking list of offerings based on the features derived from the request and the offerings. In ranking aggregation, given a request, as well as a number of ranking lists of offerings, one wants to generate a new ranking list of the offerings. Ranking creation (or ranking) is the major problem in learning to rank. It is usually formalized as a supervised learning task. The author gives detailed explanations on learning for ranking creation and ranking aggregation, including training and testing, evaluation, feature creation, and major approaches. Many methods have been proposed for ranking creation. The methods can be categorized as the pointwise, pairwise, and listwise approaches according to the loss functions they employ. They can also be categorized according to the techniques they employ, such as the SVM based, Boosting based, and Neural Network based approaches. The author also introduces some popular learning to rank methods in details. These include: PRank, OC SVM, McRank, Ranking SVM, IR SVM, GBRank, RankNet, ListNet & ListMLE, AdaRank, SVM MAP, SoftRank, LambdaRank, LambdaMART, Borda Count, Markov Chain, and CRanking. The author explains several example applications of learning to rank including web search, collaborative filtering, definition search, keyphrase extraction, query dependent summarization, and re-ranking in machine translation. A formulation of learning for ranking creation is given in the statistical learning framework. Ongoing and future research directions for learning to rank are also discussed. Table of Contents: Learning to Rank / Learning for Ranking Creation / Learning for Ranking Aggregation / Methods of Learning to Rank / Applications of Learning to Rank / Theory of Learning to Rank / Ongoing and Future Work

Book Learning to Rank for Information Retrieval and Natural Language Processing

Download or read book Learning to Rank for Information Retrieval and Natural Language Processing written by Hang Li and published by Springer Nature. This book was released on 2011-04-20 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learning to rank refers to machine learning techniques for training the model in a ranking task. Learning to rank is useful for many applications in information retrieval, natural language processing, and data mining. Intensive studies have been conducted on the problem recently and significant progress has been made. This lecture gives an introduction to the area including the fundamental problems, existing approaches, theories, applications, and future work. The author begins by showing that various ranking problems in information retrieval and natural language processing can be formalized as two basic ranking tasks, namely ranking creation (or simply ranking) and ranking aggregation. In ranking creation, given a request, one wants to generate a ranking list of offerings based on the features derived from the request and the offerings. In ranking aggregation, given a request, as well as a number of ranking lists of offerings, one wants to generate a new ranking list of the offerings. Ranking creation (or ranking) is the major problem in learning to rank. It is usually formalized as a supervised learning task. The author gives detailed explanations on learning for ranking creation and ranking aggregation, including training and testing, evaluation, feature creation, and major approaches. Many methods have been proposed for ranking creation. The methods can be categorized as the pointwise, pairwise, and listwise approaches according to the loss functions they employ. They can also be categorized according to the techniques they employ, such as the SVM based, Boosting SVM, Neural Network based approaches. The author also introduces some popular learning to rank methods in details. These include PRank, OC SVM, Ranking SVM, IR SVM, GBRank, RankNet, LambdaRank, ListNet & ListMLE, AdaRank, SVM MAP, SoftRank, Borda Count, Markov Chain, and CRanking. The author explains several example applications of learning to rank including web search, collaborative filtering, definition search, keyphrase extraction, query dependent summarization, and re-ranking in machine translation. A formulation of learning for ranking creation is given in the statistical learning framework. Ongoing and future research directions for learning to rank are also discussed. Table of Contents: Introduction / Learning for Ranking Creation / Learning for Ranking Aggregation / Methods of Learning to Rank / Applications of Learning to Rank / Theory of Learning to Rank / Ongoing and Future Work

Book Introduction to Information Retrieval

Download or read book Introduction to Information Retrieval written by Christopher D. Manning and published by Cambridge University Press. This book was released on 2008-07-07 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.

Book Natural Language Processing for Social Media  Second Edition

Download or read book Natural Language Processing for Social Media Second Edition written by Atefeh Farzindar and published by Springer Nature. This book was released on 2017-12-15 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts (big data), and shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, healthcare, business intelligence, industry, marketing, and security and defence. We review the existing evaluation metrics for NLP and social media applications, and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks) or by the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC). In the concluding chapter, we discuss the importance of this dynamic discipline and its great potential for NLP in the coming decade, in the context of changes in mobile technology, cloud computing, virtual reality, and social networking. In this second edition, we have added information about recent progress in the tasks and applications presented in the first edition. We discuss new methods and their results. The number of research projects and publications that use social media data is constantly increasing due to continuously growing amounts of social media data and the need to automatically process them. We have added 85 new references to the more than 300 references from the first edition. Besides updating each section, we have added a new application (digital marketing) to the section on media monitoring and we have augmented the section on healthcare applications with an extended discussion of recent research on detecting signs of mental illness from social media.

Book Bayesian Analysis in Natural Language Processing  Second Edition

Download or read book Bayesian Analysis in Natural Language Processing Second Edition written by Shay Cohen and published by Springer Nature. This book was released on 2022-05-31 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language. Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples. In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed "in-house" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis.

Book Learning to Rank for Information Retrieval

Download or read book Learning to Rank for Information Retrieval written by Tie-Yan Liu and published by Springer Science & Business Media. This book was released on 2011-04-29 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called “learning to rank”. Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches – these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance. This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.

Book Advances in Information Retrieval

Download or read book Advances in Information Retrieval written by Nazli Goharian and published by Springer Nature. This book was released on with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Foundations of Statistical Natural Language Processing

Download or read book Foundations of Statistical Natural Language Processing written by Christopher Manning and published by MIT Press. This book was released on 1999-05-28 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Book Natural Language Processing for Social Media  Third Edition

Download or read book Natural Language Processing for Social Media Third Edition written by Anna Atefeh Farzindar and published by Springer Nature. This book was released on 2022-05-31 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts, and it shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, and business intelligence. The book further covers the existing evaluation metrics for NLP and social media applications and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks), the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC), or the Conference and Labs of the Evaluation Forum (CLEF). In this third edition of the book, the authors added information about recent progress in NLP for social media applications, including more about the modern techniques provided by deep neural networks (DNNs) for modeling language and analyzing social media data.

Book Semantic Relations Between Nominals  Second Edition

Download or read book Semantic Relations Between Nominals Second Edition written by Vivi Nastase and published by Springer Nature. This book was released on 2022-05-31 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Opportunity and Curiosity find similar rocks on Mars. One can generally understand this statement if one knows that Opportunity and Curiosity are instances of the class of Mars rovers, and recognizes that, as signalled by the word on, rocks are located on Mars. Two mental operations contribute to understanding: recognize how entities/concepts mentioned in a text interact and recall already known facts (which often themselves consist of relations between entities/concepts). Concept interactions one identifies in the text can be added to the repository of known facts, and aid the processing of future texts. The amassed knowledge can assist many advanced language-processing tasks, including summarization, question answering and machine translation. Semantic relations are the connections we perceive between things which interact. The book explores two, now intertwined, threads in semantic relations: how they are expressed in texts and what role they play in knowledge repositories. A historical perspective takes us back more than 2000 years to their beginnings, and then to developments much closer to our time: various attempts at producing lists of semantic relations, necessary and sufficient to express the interaction between entities/concepts. A look at relations outside context, then in general texts, and then in texts in specialized domains, has gradually brought new insights, and led to essential adjustments in how the relations are seen. At the same time, datasets which encompass these phenomena have become available. They started small, then grew somewhat, then became truly large. The large resources are inevitably noisy because they are constructed automatically. The available corpora—to be analyzed, or used to gather relational evidence—have also grown, and some systems now operate at the Web scale. The learning of semantic relations has proceeded in parallel, in adherence to supervised, unsupervised or distantly supervised paradigms. Detailed analyses of annotated datasets in supervised learning have granted insights useful in developing unsupervised and distantly supervised methods. These in turn have contributed to the understanding of what relations are and how to find them, and that has led to methods scalable to Web-sized textual data. The size and redundancy of information in very large corpora, which at first seemed problematic, have been harnessed to improve the process of relation extraction/learning. The newest technology, deep learning, supplies innovative and surprising solutions to a variety of problems in relation learning. This book aims to paint a big picture and to offer interesting details.

Book Natural Language Processing for Social Media

Download or read book Natural Language Processing for Social Media written by Atefeh Farzindar and published by Springer Nature. This book was released on 2015-08-31 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on Natural Language Processing (NLP) tools and methods for processing the non-traditional information from social media data that is available in large amounts (big data), and shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, business intelligence, industry, marketing, and security and defense. We review the existing evaluation metrics for NLP and social media applications, and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks) or by the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC). In the concluding chapter, we discuss the importance of this dynamic discipline and its great potential for NLP in the coming decade, in the context of changes in mobile technology, cloud computing, and social networking.

Book Bayesian Analysis in Natural Language Processing

Download or read book Bayesian Analysis in Natural Language Processing written by Shay Cohen and published by Morgan & Claypool Publishers. This book was released on 2019-04-09 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language. Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples. In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed "in-house" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis.

Book Embeddings in Natural Language Processing

Download or read book Embeddings in Natural Language Processing written by Mohammad Taher Pilehvar and published by Springer Nature. This book was released on 2022-05-31 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.

Book Neural Network Methods for Natural Language Processing

Download or read book Neural Network Methods for Natural Language Processing written by Yoav Goldberg and published by Springer Nature. This book was released on 2022-06-01 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Book Statistical Significance Testing for Natural Language Processing

Download or read book Statistical Significance Testing for Natural Language Processing written by Rotem Dror and published by Springer Nature. This book was released on 2022-06-01 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a new algorithm, that does not include extensive experimental analysis, and the number of involved tasks, datasets, domains, and languages is constantly growing. This emphasis on empirical results highlights the role of statistical significance testing in NLP research: If we, as a community, rely on empirical evaluation to validate our hypotheses and reveal the correct language processing mechanisms, we better be sure that our results are not coincidental. The goal of this book is to discuss the main aspects of statistical significance testing in NLP. Our guiding assumption throughout the book is that the basic question NLP researchers and engineers deal with is whether or not one algorithm can be considered better than another one. This question drives the field forward as it allows the constant progress of developing better technology for language processing challenges. In practice, researchers and engineers would like to draw the right conclusion from a limited set of experiments, and this conclusion should hold for other experiments with datasets they do not have at their disposal or that they cannot perform due to limited time and resources. The book hence discusses the opportunities and challenges in using statistical significance testing in NLP, from the point of view of experimental comparison between two algorithms. We cover topics such as choosing an appropriate significance test for the major NLP tasks, dealing with the unique aspects of significance testing for non-convex deep neural networks, accounting for a large number of comparisons between two NLP algorithms in a statistically valid manner (multiple hypothesis testing), and, finally, the unique challenges yielded by the nature of the data and practices of the field.

Book Explainable Natural Language Processing

Download or read book Explainable Natural Language Processing written by Anders Søgaard and published by Springer Nature. This book was released on 2022-06-01 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.

Book Linguistic Fundamentals for Natural Language Processing II

Download or read book Linguistic Fundamentals for Natural Language Processing II written by Emily M. Bender and published by Springer Nature. This book was released on 2022-06-01 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meaning is a fundamental concept in Natural Language Processing (NLP), in the tasks of both Natural Language Understanding (NLU) and Natural Language Generation (NLG). This is because the aims of these fields are to build systems that understand what people mean when they speak or write, and that can produce linguistic strings that successfully express to people the intended content. In order for NLP to scale beyond partial, task-specific solutions, researchers in these fields must be informed by what is known about how humans use language to express and understand communicative intents. The purpose of this book is to present a selection of useful information about semantics and pragmatics, as understood in linguistics, in a way that's accessible to and useful for NLP practitioners with minimal (or even no) prior training in linguistics.