EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Dimensional Single Cell Analysis

Download or read book High Dimensional Single Cell Analysis written by Harris G. Fienberg and published by Springer. This book was released on 2014-04-22 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume highlights the most interesting biomedical and clinical applications of high-dimensional flow and mass cytometry. It reviews current practical approaches used to perform high-dimensional experiments and addresses key bioinformatic techniques for the analysis of data sets involving dozens of parameters in millions of single cells. Topics include single cell cancer biology; studies of the human immunome; exploration of immunological cell types such as CD8+ T cells; decipherment of signaling processes of cancer; mass-tag cellular barcoding; analysis of protein interactions by proximity ligation assays; Cytobank, a platform for the analysis of cytometry data; computational analysis of high-dimensional flow cytometric data; computational deconvolution approaches for the description of intracellular signaling dynamics and hyperspectral cytometry. All 10 chapters of this book have been written by respected experts in their fields. It is an invaluable reference book for both basic and clinical researchers.

Book Genes   Signals

    Book Details:
  • Author : Mark Ptashne
  • Publisher : CSHL Press
  • Release : 2002
  • ISBN : 9780879696337
  • Pages : 212 pages

Download or read book Genes Signals written by Mark Ptashne and published by CSHL Press. This book was released on 2002 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: P. 103.

Book Graph Representation Learning

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Book Computational Methods for Single Cell Data Analysis

Download or read book Computational Methods for Single Cell Data Analysis written by Guo-Cheng Yuan and published by Humana Press. This book was released on 2019-02-14 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.

Book Kernel Methods for Pattern Analysis

Download or read book Kernel Methods for Pattern Analysis written by John Shawe-Taylor and published by Cambridge University Press. This book was released on 2004-06-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Tumor Immunology and Immunotherapy   Cellular Methods Part B

Download or read book Tumor Immunology and Immunotherapy Cellular Methods Part B written by and published by Academic Press. This book was released on 2020-01-29 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tumor Immunology and Immunotherapy – Cellular Methods Part B, Volume 632, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics covered include Quantitation of calreticulin exposure associated with immunogenic cell death, Side-by-side comparisons of flow cytometry and immunohistochemistry for detection of calreticulin exposure in the course of immunogenic cell death, Quantitative determination of phagocytosis by bone marrow-derived dendritic cells via imaging flow cytometry, Cytofluorometric assessment of dendritic cell-mediated uptake of cancer cell apoptotic bodies, Methods to assess DC-dependent priming of T cell responses by dying cells, and more. - Contains content written by authorities in the field - Provides a comprehensive view on the topics covered - Includes a high level of detail

Book Level Set Methods and Dynamic Implicit Surfaces

Download or read book Level Set Methods and Dynamic Implicit Surfaces written by Stanley Osher and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very hot area with a wide range of applications; Gives complete numerical analysis and recipes, which will enable readers to quickly apply the techniques to real problems; Includes two new techniques pioneered by Osher and Fedkiw; Osher and Fedkiw are internationally well-known researchers in this area

Book Relative Distribution Methods in the Social Sciences

Download or read book Relative Distribution Methods in the Social Sciences written by Mark S. Handcock and published by Springer Science & Business Media. This book was released on 2006-05-10 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents methods for full comparative distributional analysis based on the relative distribution. This provides a general integrated framework for analysis, a graphical component that simplifies exploratory data analysis and display, a statistically valid basis for the development of hypothesis-driven summary measures, and the potential for decomposition - enabling the examination of complex hypotheses regarding the origins of distributional changes within and between groups. Written for data analysts and those interested in measurement, the text can also serve as a textbook for a course on distributional methods.

Book Introduction to Single Cell Omics

Download or read book Introduction to Single Cell Omics written by Xinghua Pan and published by Frontiers Media SA. This book was released on 2019-09-19 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.

Book Molecular Biology of the Cell

Download or read book Molecular Biology of the Cell written by and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book RNA Seq Analysis  Methods  Applications and Challenges

Download or read book RNA Seq Analysis Methods Applications and Challenges written by Filippo Geraci and published by Frontiers Media SA. This book was released on 2020-06-08 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Foundations of Machine Learning  second edition

Download or read book Foundations of Machine Learning second edition written by Mehryar Mohri and published by MIT Press. This book was released on 2018-12-25 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Book Statistical Genomics

    Book Details:
  • Author : Ewy Mathé
  • Publisher : Humana
  • Release : 2016-03-24
  • ISBN : 9781493935765
  • Pages : 0 pages

Download or read book Statistical Genomics written by Ewy Mathé and published by Humana. This book was released on 2016-03-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume expands on statistical analysis of genomic data by discussing cross-cutting groundwork material, public data repositories, common applications, and representative tools for operating on genomic data. Statistical Genomics: Methods and Protocols is divided into four sections. The first section discusses overview material and resources that can be applied across topics mentioned throughout the book. The second section covers prominent public repositories for genomic data. The third section presents several different biological applications of statistical genomics, and the fourth section highlights software tools that can be used to facilitate ad-hoc analysis and data integration. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible analysis protocols, and tips on troubleshooting and avoiding known pitfalls. Through and practical, Statistical Genomics: Methods and Protocols, explores a range of both applications and tools and is ideal for anyone interested in the statistical analysis of genomic data.

Book Systems Genetics

    Book Details:
  • Author : Florian Markowetz
  • Publisher : Cambridge University Press
  • Release : 2015-07-02
  • ISBN : 131638098X
  • Pages : 287 pages

Download or read book Systems Genetics written by Florian Markowetz and published by Cambridge University Press. This book was released on 2015-07-02 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whereas genetic studies have traditionally focused on explaining heritance of single traits and their phenotypes, recent technological advances have made it possible to comprehensively dissect the genetic architecture of complex traits and quantify how genes interact to shape phenotypes. This exciting new area has been termed systems genetics and is born out of a synthesis of multiple fields, integrating a range of approaches and exploiting our increased ability to obtain quantitative and detailed measurements on a broad spectrum of phenotypes. Gathering the contributions of leading scientists, both computational and experimental, this book shows how experimental perturbations can help us to understand the link between genotype and phenotype. A snapshot of current research activity and state-of-the-art approaches to systems genetics are provided, including work from model organisms such as Saccharomyces cerevisiae and Drosophila melanogaster, as well as from human studies.

Book Geometric Structure of High Dimensional Data and Dimensionality Reduction

Download or read book Geometric Structure of High Dimensional Data and Dimensionality Reduction written by Jianzhong Wang and published by Springer Science & Business Media. This book was released on 2012-04-28 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Geometric Structure of High-Dimensional Data and Dimensionality Reduction" adopts data geometry as a framework to address various methods of dimensionality reduction. In addition to the introduction to well-known linear methods, the book moreover stresses the recently developed nonlinear methods and introduces the applications of dimensionality reduction in many areas, such as face recognition, image segmentation, data classification, data visualization, and hyperspectral imagery data analysis. Numerous tables and graphs are included to illustrate the ideas, effects, and shortcomings of the methods. MATLAB code of all dimensionality reduction algorithms is provided to aid the readers with the implementations on computers. The book will be useful for mathematicians, statisticians, computer scientists, and data analysts. It is also a valuable handbook for other practitioners who have a basic background in mathematics, statistics and/or computer algorithms, like internet search engine designers, physicists, geologists, electronic engineers, and economists. Jianzhong Wang is a Professor of Mathematics at Sam Houston State University, U.S.A.

Book The Strategy of the Genes

Download or read book The Strategy of the Genes written by C.H. Waddington and published by Routledge. This book was released on 2014-04-29 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1957, this essential classic work bridged the gap between analytical and theoretical biology, thus setting the insights of the former in a context which more sensitively reflects the ambiguities surrounding many of its core concepts and objectives. Specifically, these five essays are concerned with some of the major problems of classical biology: the precise character of biological organisation, the processes which generate it, and the specifics of evolution. With regard to these issues, some thinkers suggest that biological organisms are not merely distinguishable from inanimate ‘things’ in terms of complexity, but are in fact radically different qualitatively: they exemplify some constitutive principle which is not elsewhere manifested. It is the desire to bring such ideas into conformity with our understanding of analytical biology which unifies these essays. They explore the contours of a conceptual framework sufficiently wide to embrace all aspects of living systems.

Book Gene Network Inference

    Book Details:
  • Author : Alberto Fuente
  • Publisher : Springer Science & Business Media
  • Release : 2014-01-03
  • ISBN : 3642451616
  • Pages : 135 pages

Download or read book Gene Network Inference written by Alberto Fuente and published by Springer Science & Business Media. This book was released on 2014-01-03 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent methods for Systems Genetics (SG) data analysis, applying them to a suite of simulated SG benchmark datasets. Each of the chapter authors received the same datasets to evaluate the performance of their method to better understand which algorithms are most useful for obtaining reliable models from SG datasets. The knowledge gained from this benchmarking study will ultimately allow these algorithms to be used with confidence for SG studies e.g. of complex human diseases or food crop improvement. The book is primarily intended for researchers with a background in the life sciences, not for computer scientists or statisticians.