Download or read book Learning Apache Drill written by Charles Givre and published by O'Reilly Media. This book was released on 2018-11-02 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up to speed with Apache Drill, an extensible distributed SQL query engine that reads massive datasets in many popular file formats such as Parquet, JSON, and CSV. Drill reads data in HDFS or in cloud-native storage such as S3 and works with Hive metastores along with distributed databases such as HBase, MongoDB, and relational databases. Drill works everywhere: on your laptop or in your largest cluster. In this practical book, Drill committers Charles Givre and Paul Rogers show analysts and data scientists how to query and analyze raw data using this powerful tool. Data scientists today spend about 80% of their time just gathering and cleaning data. With this book, you’ll learn how Drill helps you analyze data more effectively to drive down time to insight. Use Drill to clean, prepare, and summarize delimited data for further analysis Query file types including logfiles, Parquet, JSON, and other complex formats Query Hadoop, relational databases, MongoDB, and Kafka with standard SQL Connect to Drill programmatically using a variety of languages Use Drill even with challenging or ambiguous file formats Perform sophisticated analysis by extending Drill’s functionality with user-defined functions Facilitate data analysis for network security, image metadata, and machine learning
Download or read book Real World Hadoop written by Ted Dunning and published by "O'Reilly Media, Inc.". This book was released on 2015-03-24 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re a business team leader, CIO, business analyst, or developer interested in how Apache Hadoop and Apache HBase-related technologies can address problems involving large-scale data in cost-effective ways, this book is for you. Using real-world stories and situations, authors Ted Dunning and Ellen Friedman show Hadoop newcomers and seasoned users alike how NoSQL databases and Hadoop can solve a variety of business and research issues. You’ll learn about early decisions and pre-planning that can make the process easier and more productive. If you’re already using these technologies, you’ll discover ways to gain the full range of benefits possible with Hadoop. While you don’t need a deep technical background to get started, this book does provide expert guidance to help managers, architects, and practitioners succeed with their Hadoop projects. Examine a day in the life of big data: India’s ambitious Aadhaar project Review tools in the Hadoop ecosystem such as Apache’s Spark, Storm, and Drill to learn how they can help you Pick up a collection of technical and strategic tips that have helped others succeed with Hadoop Learn from several prototypical Hadoop use cases, based on how organizations have actually applied the technology Explore real-world stories that reveal how MapR customers combine use cases when putting Hadoop and NoSQL to work, including in production
Download or read book Learning Apache Apex written by Thomas Weise and published by Packt Publishing Ltd. This book was released on 2017-11-30 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing and writing a real-time streaming publication with Apache Apex About This Book Get a clear, practical approach to real-time data processing Program Apache Apex streaming applications This book shows you Apex integration with the open source Big Data ecosystem Who This Book Is For This book assumes knowledge of application development with Java and familiarity with distributed systems. Familiarity with other real-time streaming frameworks is not required, but some practical experience with other big data processing utilities might be helpful. What You Will Learn Put together a functioning Apex application from scratch Scale an Apex application and configure it for optimal performance Understand how to deal with failures via the fault tolerance features of the platform Use Apex via other frameworks such as Beam Understand the DevOps implications of deploying Apex In Detail Apache Apex is a next-generation stream processing framework designed to operate on data at large scale, with minimum latency, maximum reliability, and strict correctness guarantees. Half of the book consists of Apex applications, showing you key aspects of data processing pipelines such as connectors for sources and sinks, and common data transformations. The other half of the book is evenly split into explaining the Apex framework, and tuning, testing, and scaling Apex applications. Much of our economic world depends on growing streams of data, such as social media feeds, financial records, data from mobile devices, sensors and machines (the Internet of Things - IoT). The projects in the book show how to process such streams to gain valuable, timely, and actionable insights. Traditional use cases, such as ETL, that currently consume a significant chunk of data engineering resources are also covered. The final chapter shows you future possibilities emerging in the streaming space, and how Apache Apex can contribute to it. Style and approach This book is divided into two major parts: first it explains what Apex is, what its relevant parts are, and how to write well-built Apex applications. The second part is entirely application-driven, walking you through Apex applications of increasing complexity.
Download or read book Learning Spark written by Jules S. Damji and published by O'Reilly Media. This book was released on 2020-07-16 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Download or read book Machine Learning with Apache Spark Quick Start Guide written by Jillur Quddus and published by Packt Publishing Ltd. This book was released on 2018-12-26 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key FeaturesMake a hands-on start in the fields of Big Data, Distributed Technologies and Machine LearningLearn how to design, develop and interpret the results of common Machine Learning algorithmsUncover hidden patterns in your data in order to derive real actionable insights and business valueBook Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learnUnderstand how Spark fits in the context of the big data ecosystemUnderstand how to deploy and configure a local development environment using Apache SparkUnderstand how to design supervised and unsupervised learning modelsBuild models to perform NLP, deep learning, and cognitive services using Spark ML librariesDesign real-time machine learning pipelines in Apache SparkBecome familiar with advanced techniques for processing a large volume of data by applying machine learning algorithmsWho this book is for This book is aimed at Business Analysts, Data Analysts and Data Scientists who wish to make a hands-on start in order to take advantage of modern Big Data technologies combined with Advanced Analytics.
Download or read book Learning SQL written by Alan Beaulieu and published by O'Reilly Media. This book was released on 2009-04-11 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated for the latest database management systems -- including MySQL 6.0, Oracle 11g, and Microsoft's SQL Server 2008 -- this introductory guide will get you up and running with SQL quickly. Whether you need to write database applications, perform administrative tasks, or generate reports, Learning SQL, Second Edition, will help you easily master all the SQL fundamentals. Each chapter presents a self-contained lesson on a key SQL concept or technique, with numerous illustrations and annotated examples. Exercises at the end of each chapter let you practice the skills you learn. With this book, you will: Move quickly through SQL basics and learn several advanced features Use SQL data statements to generate, manipulate, and retrieve data Create database objects, such as tables, indexes, and constraints, using SQL schema statements Learn how data sets interact with queries, and understand the importance of subqueries Convert and manipulate data with SQL's built-in functions, and use conditional logic in data statements Knowledge of SQL is a must for interacting with data. With Learning SQL, you'll quickly learn how to put the power and flexibility of this language to work.
Download or read book Apache Hive Essentials written by Dayong Du and published by Packt Publishing Ltd. This book was released on 2018-06-30 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes you on a fantastic journey to discover the attributes of big data using Apache Hive. Key Features Grasp the skills needed to write efficient Hive queries to analyze the Big Data Discover how Hive can coexist and work with other tools within the Hadoop ecosystem Uses practical, example-oriented scenarios to cover all the newly released features of Apache Hive 2.3.3 Book Description In this book, we prepare you for your journey into big data by frstly introducing you to backgrounds in the big data domain, alongwith the process of setting up and getting familiar with your Hive working environment. Next, the book guides you through discovering and transforming the values of big data with the help of examples. It also hones your skills in using the Hive language in an effcient manner. Toward the end, the book focuses on advanced topics, such as performance, security, and extensions in Hive, which will guide you on exciting adventures on this worthwhile big data journey. By the end of the book, you will be familiar with Hive and able to work effeciently to find solutions to big data problems What you will learn Create and set up the Hive environment Discover how to use Hive's definition language to describe data Discover interesting data by joining and filtering datasets in Hive Transform data by using Hive sorting, ordering, and functions Aggregate and sample data in different ways Boost Hive query performance and enhance data security in Hive Customize Hive to your needs by using user-defined functions and integrate it with other tools Who this book is for If you are a data analyst, developer, or simply someone who wants to quickly get started with Hive to explore and analyze Big Data in Hadoop, this is the book for you. Since Hive is an SQL-like language, some previous experience with SQL will be useful to get the most out of this book.
Download or read book Sharing Big Data Safely written by Ted Dunning and published by "O'Reilly Media, Inc.". This book was released on 2015-09-15 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many big data-driven companies today are moving to protect certain types of data against intrusion, leaks, or unauthorized eyes. But how do you lock down data while granting access to people who need to see it? In this practical book, authors Ted Dunning and Ellen Friedman offer two novel and practical solutions that you can implement right away. Ideal for both technical and non-technical decision makers, group leaders, developers, and data scientists, this book shows you how to: Share original data in a controlled way so that different groups within your organization only see part of the whole. You’ll learn how to do this with the new open source SQL query engine Apache Drill. Provide synthetic data that emulates the behavior of sensitive data. This approach enables external advisors to work with you on projects involving data that you can't show them. If you’re intrigued by the synthetic data solution, explore the log-synth program that Ted Dunning developed as open source code (available on GitHub), along with how-to instructions and tips for best practice. You’ll also get a collection of use cases. Providing lock-down security while safely sharing data is a significant challenge for a growing number of organizations. With this book, you’ll discover new options to share data safely without sacrificing security.
Download or read book Time Series Databases written by Ted Dunning and published by O'Reilly Media. This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series data is of growing importance, especially with the rapid expansion of the Internet of Things. This concise guide shows you effective ways to collect, persist, and access large-scale time series data for analysis. You'll explore the theory behind time series databases and learn practical methods for implementing them. Authors Ted Dunning and Ellen Friedman provide a detailed examination of open source tools such as OpenTSDB and new modifications that greatly speed up data ingestion. You'll learn: A variety of time series use cases The advantages of NoSQL databases for large-scale time series data NoSQL table design for high-performance time series databases The benefits and limitations of OpenTSDB How to access data in OpenTSDB using R, Go, and Ruby How time series databases contribute to practical machine learning projects How to handle the added complexity of geo-temporal data For advice on analyzing time series data, check out Practical Machine Learning: A New Look at Anomaly Detection, also from Ted Dunning and Ellen Friedman.
Download or read book Learn Python 3 the Hard Way written by Zed A. Shaw and published by Addison-Wesley Professional. This book was released on 2017-06-26 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Python 3 the Hard Way, you’ll learn Python by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how a computer works; what good programs look like; and how to read, write, and think about code. Zed then teaches you even more in 5+ hours of video where he shows you how to break, fix, and debug your code—live, as he’s doing the exercises. Install a complete Python environment Organize and write code Fix and break code Basic mathematics Variables Strings and text Interact with users Work with files Looping and logic Data structures using lists and dictionaries Program design Object-oriented programming Inheritance and composition Modules, classes, and objects Python packaging Automated testing Basic game development Basic web development It’ll be hard at first. But soon, you’ll just get it—and that will feel great! This course will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Python programmer. This Book Is Perfect For Total beginners with zero programming experience Junior developers who know one or two languages Returning professionals who haven’t written code in years Seasoned professionals looking for a fast, simple, crash course in Python 3
Download or read book Learning YARN written by Akhil Arora and published by Packt Publishing Ltd. This book was released on 2015-09-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Moving beyond MapReduce - learn resource management and big data processing using YARN About This Book Deep dive into YARN components, schedulers, life cycle management and security architecture Create your own Hadoop-YARN applications and integrate big data technologies with YARN Step-by-step guide to provision, manage, and monitor Hadoop-YARN clusters with ease Who This Book Is For This book is intended for those who want to understand what YARN is and how to efficiently use it for the resource management of large clusters. For cluster administrators, this book gives a detailed explanation of provisioning and managing YARN clusters. If you are a Java developer or an open source contributor, this book will help you to drill down the YARN architecture, write your own YARN applications and understand the application execution phases. This book will also help big data engineers explore YARN integration with real-time analytics technologies such as Spark and Storm. What You Will Learn Explore YARN features and offerings Manage big data clusters efficiently using the YARN framework Create single as well as multi-node Hadoop-YARN clusters on Linux machines Understand YARN components and their administration Gain insights into application execution flow over a YARN cluster Write your own distributed application and execute it over YARN cluster Work with schedulers and queues for efficient scheduling of applications Integrate big data projects like Spark and Storm with YARN In Detail Today enterprises generate huge volumes of data. In order to provide effective services and to make smarter and more intelligent decisions from these huge volumes of data, enterprises use big-data analytics. In recent years, Hadoop has been used for massive data storage and efficient distributed processing of data. The Yet Another Resource Negotiator (YARN) framework solves the design problems related to resource management faced by the Hadoop 1.x framework by providing a more scalable, efficient, flexible, and highly available resource management framework for distributed data processing. This book starts with an overview of the YARN features and explains how YARN provides a business solution for growing big data needs. You will learn to provision and manage single, as well as multi-node, Hadoop-YARN clusters in the easiest way. You will walk through the YARN administration, life cycle management, application execution, REST APIs, schedulers, security framework and so on. You will gain insights about the YARN components and features such as ResourceManager, NodeManager, ApplicationMaster, Container, Timeline Server, High Availability, Resource Localisation and so on. The book explains Hadoop-YARN commands and the configurations of components and explores topics such as High Availability, Resource Localization and Log aggregation. You will then be ready to develop your own ApplicationMaster and execute it over a Hadoop-YARN cluster. Towards the end of the book, you will learn about the security architecture and integration of YARN with big data technologies like Spark and Storm. This book promises conceptual as well as practical knowledge of resource management using YARN. Style and approach Starting with the basics and covering the core concepts with the practical usage, this tutorial is a complete guide to learn and explore YARN offerings.
Download or read book Spark The Definitive Guide written by Bill Chambers and published by "O'Reilly Media, Inc.". This book was released on 2018-02-08 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Download or read book Beginning Apache Spark 3 written by Hien Luu and published by Apress. This book was released on 2021-10-23 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take a journey toward discovering, learning, and using Apache Spark 3.0. In this book, you will gain expertise on the powerful and efficient distributed data processing engine inside of Apache Spark; its user-friendly, comprehensive, and flexible programming model for processing data in batch and streaming; and the scalable machine learning algorithms and practical utilities to build machine learning applications. Beginning Apache Spark 3 begins by explaining different ways of interacting with Apache Spark, such as Spark Concepts and Architecture, and Spark Unified Stack. Next, it offers an overview of Spark SQL before moving on to its advanced features. It covers tips and techniques for dealing with performance issues, followed by an overview of the structured streaming processing engine. It concludes with a demonstration of how to develop machine learning applications using Spark MLlib and how to manage the machine learning development lifecycle. This book is packed with practical examples and code snippets to help you master concepts and features immediately after they are covered in each section. After reading this book, you will have the knowledge required to build your own big data pipelines, applications, and machine learning applications. What You Will Learn Master the Spark unified data analytics engine and its various components Work in tandem to provide a scalable, fault tolerant and performant data processing engine Leverage the user-friendly and flexible programming model to perform simple to complex data analytics using dataframe and Spark SQL Develop machine learning applications using Spark MLlib Manage the machine learning development lifecycle using MLflow Who This Book Is For Data scientists, data engineers and software developers.
Download or read book Streaming Architecture written by Ted Dunning and published by "O'Reilly Media, Inc.". This book was released on 2016-05-10 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: More and more data-driven companies are looking to adopt stream processing and streaming analytics. With this concise ebook, you’ll learn best practices for designing a reliable architecture that supports this emerging big-data paradigm. Authors Ted Dunning and Ellen Friedman (Real World Hadoop) help you explore some of the best technologies to handle stream processing and analytics, with a focus on the upstream queuing or message-passing layer. To illustrate the effectiveness of these technologies, this book also includes specific use cases. Ideal for developers and non-technical people alike, this book describes: Key elements in good design for streaming analytics, focusing on the essential characteristics of the messaging layer New messaging technologies, including Apache Kafka and MapR Streams, with links to sample code Technology choices for streaming analytics: Apache Spark Streaming, Apache Flink, Apache Storm, and Apache Apex How stream-based architectures are helpful to support microservices Specific use cases such as fraud detection and geo-distributed data streams Ted Dunning is Chief Applications Architect at MapR Technologies, and active in the open source community. He currently serves as VP for Incubator at the Apache Foundation, as a champion and mentor for a large number of projects, and as committer and PMC member of the Apache ZooKeeper and Drill projects. Ted is on Twitter as @ted_dunning. Ellen Friedman, a committer for the Apache Drill and Apache Mahout projects, is a solutions consultant and well-known speaker and author, currently writing mainly about big data topics. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics. Ellen is on Twitter as @Ellen_Friedman.
Download or read book Learning SQL written by Alan Beaulieu and published by "O'Reilly Media, Inc.". This book was released on 2020-03-04 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: As data floods into your company, you need to put it to work right away—and SQL is the best tool for the job. With the latest edition of this introductory guide, author Alan Beaulieu helps developers get up to speed with SQL fundamentals for writing database applications, performing administrative tasks, and generating reports. You’ll find new chapters on SQL and big data, analytic functions, and working with very large databases. Each chapter presents a self-contained lesson on a key SQL concept or technique using numerous illustrations and annotated examples. Exercises let you practice the skills you learn. Knowledge of SQL is a must for interacting with data. With Learning SQL, you’ll quickly discover how to put the power and flexibility of this language to work. Move quickly through SQL basics and several advanced features Use SQL data statements to generate, manipulate, and retrieve data Create database objects, such as tables, indexes, and constraints with SQL schema statements Learn how datasets interact with queries; understand the importance of subqueries Convert and manipulate data with SQL’s built-in functions and use conditional logic in data statements
Download or read book Stream Processing with Apache Flink written by Fabian Hueske and published by O'Reilly Media. This book was released on 2019-04-11 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with Apache Flink, the open source framework that powers some of the world’s largest stream processing applications. With this practical book, you’ll explore the fundamental concepts of parallel stream processing and discover how this technology differs from traditional batch data processing. Longtime Apache Flink committers Fabian Hueske and Vasia Kalavri show you how to implement scalable streaming applications with Flink’s DataStream API and continuously run and maintain these applications in operational environments. Stream processing is ideal for many use cases, including low-latency ETL, streaming analytics, and real-time dashboards as well as fraud detection, anomaly detection, and alerting. You can process continuous data of any kind, including user interactions, financial transactions, and IoT data, as soon as you generate them. Learn concepts and challenges of distributed stateful stream processing Explore Flink’s system architecture, including its event-time processing mode and fault-tolerance model Understand the fundamentals and building blocks of the DataStream API, including its time-based and statefuloperators Read data from and write data to external systems with exactly-once consistency Deploy and configure Flink clusters Operate continuously running streaming applications
Download or read book Hands On Big Data Modeling written by James Lee and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solve all big data problems by learning how to create efficient data models Key FeaturesCreate effective models that get the most out of big dataApply your knowledge to datasets from Twitter and weather data to learn big dataTackle different data modeling challenges with expert techniques presented in this bookBook Description Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements. To start with, you’ll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you’ll work with structured and semi-structured data with the help of real-life examples. Once you’ve got to grips with the basics, you’ll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You’ll also learn to create graph data models and explore data modeling with streaming data using real-world datasets. By the end of this book, you’ll be able to design and develop efficient data models for varying data sizes easily and efficiently. What you will learnGet insights into big data and discover various data modelsExplore conceptual, logical, and big data modelsUnderstand how to model data containing different file typesRun through data modeling with examples of Twitter, Bitcoin, IMDB and weather data modelingCreate data models such as Graph Data and Vector SpaceModel structured and unstructured data using Python and RWho this book is for This book is great for programmers, geologists, biologists, and every professional who deals with spatial data. If you want to learn how to handle GIS, GPS, and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful.